Building the World

August 20, 2021
by buildingtheworld
0 comments

SPACE: Keeping an Eye on Climate Change

“Animation showing changes in Iris,” by Sagyxil, 6 February 2010. GNU open license. Image: wikimedia.

The Intergovernmental Panel on Climate Change (IPCC) confirmed our worst fears: the world may be losing the battle of climate. Some effects of global warming are permanent and irreversible, like sea-level rise. When the Greenland ice sheet melts, it will not refreeze. There are other effects that may ultimately reverse, but will take centuries to do so: oceanic acidification and deoxygenation, melting of permafrost, air pollution.

“Earth seen from Space,” by DLR: German Aerospace Center, 23 July 2012. Image: wikimedia.

It’s not all totally bad news: there may still be a window. The question is how to use our limited remaining time most wisely? According to Peter Huybers, professor of earth and planetary sciences at Harvard: “There are notable opportunities to increase our rate of learning about the climate system by developing a constellation of satellites to monitor the flow of energy in and out of the Earth system. Another constellation of satellites could monitor greenhouse gas fluxes for purposes of better holding nations accountable for their emissions.” (Huybers and Mulcahy, 2021)

“Earth’s seasons, seen by satellite.” NASA.gov.

When Sputnik launched in 1957 and COMSAT followed in 1962 , we developed capability to see Earth as a whole, dynamic system.  Science fiction always depicted space as a place to explore, maybe to inhabit, perhaps even an exit strategy from a failing Earth. But space may turn out to be the place from which T.S. Eliot’s words might come true in a new way:

“We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.”

T. S. Eliot

Eliot, T. S. “Little Gidding,” from Four Quartets. Originally published in 1943.

Huybers, Peter and Christopher Mayer. “The Near-Term Impacts of Climate Change on Investors.” Tamer Center for Social Enterprise, Columbia University Business School. VIDEO: https://www8.gsb.columbia.edu/video/videos/near-term-impacts-climate-change-investors-peter-huybers-and-christopher-mayer

Mulcahy, Ryan. “Climate scientist on UN report: Just as bad as we expected.” Interview with Peter Huybers. 12 August 2021. The Harvard Gazette. https://news.harvard.edu/gazette/story/2021/08/climate-scientist-on-un-report-just-as-bad-as-we-expected/

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

July 27, 2021
by buildingtheworld
0 comments

SPACE: Big Ticket to Ride

“Movie poster of documentary SPACE TOURISTS,” by Christian Frei, 2009. Original image at https://www.flickr.com/photos/8157718@NO2/7135867365/sizes/2/in/photostream. Public domain.

Ride with Bezos? Price still unknown – the only ticket was auctioned for $28 million: for a ten minute ride, Blue Origin’s meter runs fast as a rocket. Fly with Branson? Over 600 seats on Virgin Galactic are pre-sold, going for $200, 000 to $500, 000 for a hour’s excursion. Prefer a longer stay? A space vacay to the International Space Station by Elon Musk and SpaceX: $55 million. There are other costs – environmental.

“First successful flight of the Wright Flyer: traveled 120 ft. (36.6m) in 12 seconds, on 17 December 1903. Image: Library of Congress, ppprs.00626

One way to evaluate financial, and environmental, costs of private space travel could be to look back to 17 December 1903 when the Wright Flyer took off from Kitty Hawk. In December 1944, the Convention on International Civil Aviation  established rules for civil aviation: stated goals were safety and international cooperation. In 2004, the world had 900 airlines, tallying 22,000 aircraft serving 1,670 airports. (Spaceports, overseen by the Federal Aviation Administration, are now in high construction demand.) In 1960, civil aviation flew 100 million people; by 2017, 4 billion passengers.  In 2019, revenues in the global aviation industry reached $838 billion. However, passenger air travel spikes the highest (and fastest) growth in individual emissions. Flight shaming (flygskam) is a resulting development. Branson and Bezos both drew criticism for spending funds on space tourism when there is a world in need below.

“A simulation of ACRIMSat (Active Cavity Radiometer Irradiance Monitor Satellite)” by NASA/JPL, 2006. Public domain.

Commercialization of space might also be examined through the development and expansion of satellites. COMSAT, the first commercial satellite operator, began with Intelsat and Inmarsat. When “Early Bird” launched in 1965, the Communications Satellite Act had just established a policy for a commercial communications satellite system open to many nations cooperatively. Comsat began with a $5 million line of credit. Sales by 1996 were $1 billion. Launching satellites produces carbon pollution, and also another kind of pollution: traffic. As of 1 August 2020, there were 2,787 satellites orbiting Earth – 1,364 of them communications satellites both government and commercial.

What can we do to reduce space emissions pollution? Image: “Space Shuttle launched with two solid-fuel boosters (SRB.” NASA, 1981, public domain.

Branson’s Virgin Atlantic, a commercial airline, ferries passengers worldwide, diluting the energy burden per seat. But Virgin Galactic carries just six, tallying a much higher per-person emissions cost; the one-hour flight is equivalent to driving a typical car around the Earth. One concern is the type of fuel used by Virgin Galactic: the system runs on a kind of synthetic fuel that burns with nitrous oxide, shooting black carbon into the stratosphere. Blue Origin uses liquid hydrogen and liquid oxygen, causing 750 times less climate-forcing magnitude than Virgin’s (Ahmed 2021). SpaceX will bring four passengers to space in September, causing the equivalent of 395 transatlantic flights worth of emissions.

“Image of depleted Ozone Layer at South Pole, Antarctica” by NASA, 2006. Image: public domain.

Space tourism projects market growth of 17% each year in the coming decade. Price-per-flight will be reduced, and innovations will increase. Just as SpaceX introduced reusable rockets, a game-changer for the space industry (landing 44 of 52 attempts), and Axiom is planning to launch its own commercial space station at the cost of $1.8 billion to NASA’s $150 billion for the International Space Station, privatization of space will streamline the industry. But because rockets emit 100 times more CO2 per passenger than flights (Marais 2021), and because rocket exhaust is released directly into the atmosphere from a higher point of entry, the ozone layer (earlier protected by the 1987 Montreal Protocol) may be again under threat.

Aviator Amelia Earhart and Purdue University President Edward C. Elliott, with Lockheed Electra, 1936. Image: public domain.

Some feel private space commercialization may be a misuse of resources more urgently needed on Earth; others predict important innovations will follow July 2021’s first commercial space tourism flights. Some of the most important developments must be in fuel options and emissions management. Will commercial space flight learn from civil aviation? Bezos’ Blue Origin space tourists brought little carry-on luggage, but two significant items hitched a ride: Amelia Earhart‘s goggles, and a piece of canvas from the Wright Flyer.

Ahmed, Issam. “Environmental concerns grow as space tourism takes off.” 18 July 2021. Phys.org. https://phys.org/news/2021-07-environmental-space-tourism.html

Amelia Earhart Hangar Museum. ameliaearharthangarmuseum.org

CNBC. “Blue Origin launch re-cap.” 20 July 2021. CNBC.com. https://cnb.cx/36LdlzA.

Federal Aviation Administration (FAA). “Spaceports by State.” https://www.faa.gov/space/spaceports_by_state/

Johnson, Dave. “11 of the biggest innovations shaping the future of spaceflight today.” 12 October 2019. Business Insider. https://www.businessinsider.com/spaceflight-travel-innovations-spacex-rockets-2019-10

MacMartin, Douglas G. and Ben Kravitz. “Mission-driven research for stratospheric aerosol geoengineering.” 22 January 2019. Proceedings of the National Academy of Sciences of the United States of American (PNAS). https://www.pnas.org/content/116/4/1089

Marais, Eloise. “Space tourism: rockets emit 100 times more CO2 per passenger than flights – imagine a whole industry.” 19 July 2021. The Conversation. https://theconversation.com/space-tourism-rockets-emit-100-times-more-co-per-passenger-than-flights-imagine-a-whole-industry-164601.

Pollard, James. “What is the Environmental Impact of Private Space Flight?” 20 July 2021. NBCsandiego.com. https://www.nbcsandiego.com/news/national-international/what-is-the-environmental-impact-of-private-space-flight/6289612/

Reference for Business. “COMSAT Corporation.” https://www.referenceforbusiness.com/history2/70/Comsat-Corporation.html

Ross, Martin N. and Dorin W. Toohey. 24 September 2019. “The Coming Surge of Rocket Emissions.” 24 September 2019. EOS, 100. https://doiorg/10.1029/2019EO133493

Smithsonian National Air and Space Museum. “1903 Wright Flyer.” https://airandspace.si.edu/collection-objects/1903-wright-flyer/nasm_A19610048000

United Nations. “Montreal Protocol on Substances that Deplete the Ozone Layer.” 16 September 1987. https://web.archive.org/web/20130602153542/http://ozone.unep.org/new_site/en/montreal_protocol.php

July 20, 2021
by buildingtheworld
0 comments

This SPACE for Sale or Rent

“Atmosphere Layers, showing the Kármán Line.” What’s for sale or rent? Image: based on the work of Theodore von Kármán, vectorized by NOAA and Mysid, 2014. Public domain: wikimedia commons.

When Apollo 11 placed the first people on the moon, on 20 July 1969, NASA might have known the price per person, but seats were not for sale, or rent.

On 20 July 2021, privatization of space demonstrated an aspect of commerce: market pricing, open bidding, for sale or rent. Jeff Bezos, founder of Amazon and Blue Origin, auctioned a seat on today’s ride. When the anonymous highest bidder ($28 million) backed out, citing other commitments, the place went to next-in-line Joes Daemen, CEO of Somerset Capital Partners. Daemen in turn bounced the ball to his son, Oliver Daemen, who will become the youngest person ever to go to space.

Space tourism is having a moment. On 11 July, Richard Branson flew aloft on Virgin Galactic for a view of Earth and a glimpse of space: also aboard were three Virgin staff and two crew pilots. On 20 July, Blue Origin’s New Shepard carried Jeff Bezos, brother Mark Bezos, and two other passengers: 82-year-old Mary Wallace “Wally” Funk and 18-year-old Oliver Daemen for 10 minutes of rocket tourism.

Flying to the Kármán Line (100 kilometers: 54 nautical miles/62 miles above Earth, the point considered to be the beginning of space) is not cheap, but prices vary. What’s the cost per passenger for space tourism? Yet unknown. Bezos is funding Blue Origin, founded in 2000, with share sales of Amazon stock, selling 1.85 billion worth of shares in May 2021. Bezos donated the $28 million auction proceeds to a charitable outreach: Club for the Future. Branson filed to sell $500 million in Virgin Galactic shares after the July flight, sparking a brief halt in the stock’s trading. Virgin Galactic currently has 600 reservations for space tourism flights: pricing ranges from $200,000 to $400,000, depending upon date of purchase. To date. Blue Origin has sold seats by auction: scheduled pricing is to follow. SpaceX, founded by Elon Murk, will also carry paying passengers: three people paid $55 million each for a 10-day tour to the International Space Station.

There are some who question the ethical and environmental costs of private space. Should billionaires like Bezos, Branson, and Musk spend their money flying to space or solving problems on Earth? What about the emissions of space vehicles carrying not scientific experiments but joy-riding millionaires?

Others point out that innovation often starts with entrepreneurial investment. Early in the 20th century, in 1903, the Wright brothers flew at Kitty Hawk.  In 2003, air transport generated 13.5 million jobs and significant contributions to GDP around the world. What innovations might we see from space tourism in this century? How will Virgin Galactic, SpaceX, and Blue Origin influence development in space? Watch Blue Origin’s voyage here.

In the next post, we’ll take a closer look at the costs of private space: environmental and financial.

Blue Origin. https://www.blueorigin.com

Fitzgerald, Maggie. “Virgin Galactic falls 17% after it gets set to sell $500 million in stock following Branson’s successful flight.” 12 July 2021. CNBC. https://www.cnbc.com/2021/07/12/virgin-galactic-shares-rise-after-successful-branson-flight-paves-wave-for-space-tourism-industry.html

Gershgorn, Dave. “How much is a ticket on Blue Origin? Jeff Bezos reveals new details. Let the bidding begin…” Inverse.com. https://www.inverse.com/innovation/blue-origin-ticket-price-cost-auction-date

Klueger, Jeffrey. “Wally Funk Is Going to Space Aboard Jeff Bezos’s Rocket. Here’s Why That Matters: A flight 60 years in the making.” 18 July 2021. TIME magazine. https://time.com/6080695/wally-funk-space-bezos/

Morrow, Allison. “Someone spent $28 million for a seat on the Bezos space flight and now they’re bailing because they’re busy.” 15 July 2021. CNN. https://www.cnn.com/2021/07/15/business/nightcap-bezos-space-oatly-sunscreen-recall/index.html

Palmer, Annie. “Bezos sells nearly $2 billion worth of Amazon shares.” 5 May 2021. CNBC. https://www.cnbc.com/2021/05/05/amazon-ceo-bezos-sells-nearly-2-billion-worth-of-amazon-shares.html

SpaceX. https://www.spacex.com

Taylor, Kiara. “How to Buy SpaceX Stock.” 14 May 2021. https://finance.yahoo.com/news/buy-spacex-stock-151215951.html 

Virgin Galactic.https://www.virgingalactic.com. Stock ticker NYSE: SPCE.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

July 15, 2021
by buildingtheworld
0 comments

Private SPACE

“White Knight Two and SpaceShip Two from directly below.” by Jeff Foust, 22 October 2010. Image: Wikimedia Commons 2.0 Attribution. Thank you to Jeff Foust.

Space, once the faraway realm of governments and agencies like NASA that sent the first team to walk upon the moon, has now officially gone private. On 11 July, founder of Virgin Airways and Virgin Galactic, Richard Branson became the first individual to go to outer space in a vehicle the entrepreneur helped to fund. Branson, Sirisha Banda, Colin Bennett, and Beth Moses took off from Truth or Consequences (a town renamed for a game show) New Mexico, USA, on SpaceShipTwo, a dual-winged plane with a single rocket called WhiteKnight Two. Pilots, also aboard, released the rocket and the passengers zoomed upward with three Gs of force. When the spacecraft reached 50 miles high (the official definition of outer space), SpaceShipTwo rolled over onto its belly where windows allowed the passengers to see space – and Earth. It was just this view that occasioned the 1987 World Commission on Environment and Development report: “Our Common Future.” What is the shared future of public and private space?

Illustration: “SpaceX Crew Dragon approaches International Space Station for docking.” by Nasa/SpaceX, 26 July 2018. Image: Creative Commons 2.0 Attribution. Thanks to Nasa/SpaceX.

Richard Branson, Jeff Bezos, Elon Musk represent a new kind of space: private space. Branson’s Virgin Galactic was first with tourism. SpaceX, founded by entrepreneur Elon Musk, regularly goes to the International Space Station. Asteroid exploration and mining advances are progressing with Planetary Resources, Inc – note the suffix. Blue Origin, founded by Jeff Bezos of Amazon fame, will be next, when Bezos launches into space for a day-trip with his brother Mark, and a mystery passenger who outbid 7,600 competitors with the sum of $28 million for the ride scheduled for 20 July  –  anniversary of the Apollo 11 lunar landing. (Bezos is turning the sum into a donation – more on that in the next post in this series.)

“Buzz Aldrin on the moon with Neil Armstrong seen in the helmet’s reflection.” 21 July 1969. Credit: Nasa.gov and wikimedia commons 9/98/Aldrin_Apollo_ll_original.jpg.

Neil Armstrong and Buzz Aldrin set foot upon the moon on 20 July 1969, shortly after the the Outer Space Treaty, had been signed in 1967. The Outer Space Treaty assumed, at the time, that only governments would or even could have the expertise – not to mention the funds  – to develop the orbital frontier.  The Center for Air & Space Law at the University of Mississippi School of Law observes that space laws and treaties did not anticipate privatization of space travel. How can public and private space share a common future? What should be added to the Outer Space Treaty?

Branson, Richard. #Unity22. VIDEO: https://www.youtube.com/watch?v=9t3_h9YE5hA

Center for Air and Space Law. https://airandspacelaw.olemiss.edu/

Davenport, Christian. “A seat to fly with Jeff Bezos to space sells at auction for $28 million.” 12 June 2021. The Washington Post. https://www.washingtonpost.com/technology/2021/06/12/jeff-bezos-blue-origin-auction/

Wattles, Jackie. “First to the Future: Virgin Galactic founder Richard Branson successfully rockets to outer space.” 12 July, 2021. CBS. https://www.cbs58.com/news/virgin-galactic-founder-richard-branson-successfully-rockets-to-outer-space

Wheeling Kate. “Outer Space Treaties didn’t anticipate the privatization of space travel. Can they be enforced?” 14 August 2019. https://psmag.com/social-justice/outer-space-treaties-didnt-anticipate-the-privatization-of-space-travel-can-they-be-enforced

World Commission on Environment and Development. “Our Common Future.” https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf

United Nations. “Outer Space Treaty.” https://www.unoosa.org/pdf/publications/STSPACE11E.pdf

“Private SPACE” is part of a series on space privatization. Next, “Blue Origin.”

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

May 17, 2021
by buildingtheworld
0 comments

SPACE: Red Traffic

“Riding dragon gods” illustration from Myths and Legends of China by E.T.C. Werner, 1922. Image Project Gutenberg.

Not only is the sky getting crowded with satellites, some working and others defunct but still orbiting, the planets are seeing traffic. This weekend, China landed on Mars, after arriving in orbit on 10 February. China’s Tianwen-1 mission features an orbiter, lander, and rover named Zhurong (Chinese god of fire). Watch the landing here.

“Diagrama of the Perseverance Rover with Instruments.” NASA. 17 June 2020. Image: nasa.gov/wikimedia.

Red Planet traffic includes: NASA’s rovers Curiosity and Perseverance. (Preceded by Spirit and Opportunity in 2004). Decades ago, NASA’s Viking 2 lander touched down on Utopia Planitia, a basin thousands of miles wide in the northern area of Mars. That’s the same place China landed this weekend. Scientists hypothesize that Utopia Planitia may have once been an ocean, so it’s a good site to look for signs of life. In fact, water may still be there – under the surface. NASA’s Reconnaissance orbiter detected ice there in 2016; there may be as much ice as Lake Superior. That’s good news for a number of reasons including potential for agriculture, habitation, and power. Besides China and the USA, other contributors to the study of Mars include Argentina, Austria, the European Space Agency (ESA), and France. Also in the Martian traffic pattern: Hope, an orbiter sent by the United Arab Emirates, arrived in the neighborhood on 8 May and is observing atmosphere and weather, recently releasing images of hydrogen atoms around Mars on 24 and 25 April 2021.

“Animation of Emirates’ Mission around Mars.” Image: wikimedia.

Will traffic on Mars continue to increase? Only every two years. There is a timing window when Earth and Mars are closest, and that is why there is so much activity now. While most traffic is on land, NASA’s Ingenuity, a helicopter, has been logging flight time in the Martian atmosphere – the first time (that we know of…) anyone has flown on the Red Planet.

Goswami, Namrata and Peter A. Garretson. Scramble for the Skies: The Great Power Competition to Control the Resources of Outer Space. 2020: Lexington Books. ISBN: 978498583114 and 9781498583121.

Hope Mars Mission. @HopeMarsMission. https://mobile.twitter.com/hopemarsmission/status/1392063293649424386

Myers, Steven Lee and Kenneth Chang. “China’s Mars Rover Mission Lands on the Red Planet.” 14 May 2021, updated 16 May 2021. The New York Times. https://www.nytimes.com/2021/05/14/science/china-mars.html?referringSource=articleShare

NASA. Ingenuity. WATCH the flight in 3-D. https://www.nasa.gov/feature/jpl/seeing-nasa-s-ingenuity-mars-helicopter-fly-in-3d

NASA. “Where is Perseverance?” Track the Rover. https://mars.nasa.gov/mars2020/mission/where-is-the-rover/

NASA. “NASA confirms evidence that liquid water flows on today’s Mars.” 28 September 2015. Release 15-195. https://www.nasa.gov/press-release/nasa-confirms-evidence-that-liquid-water-flows-on-today-s-mars

Tianwen-1. VIDEO of Mars landing: https://www.youtube.com/watch?v=KVKGDitCtXU

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

 

May 11, 2021
by buildingtheworld
0 comments

SPACE: What goes up, must come down. But how?

Long March 5b just missed the Maldives. Image: “Diamonds Thudufushi Beach and Water Villas, May 2017, Ari Atoll, Maldives.” by Martin Falbisoner, 2017. Wikimedia commons.

It was a long march and a splash entry. On 8 May, the Long March B5 fell from space into the Indian Ocean, thankfully missing the nearby 1, 192 islands of the Maldives. Long March 5B launched on 29 April 2021, conveying into orbit the hefty main module of the new space station that China is building, to open in 2022. Some questioned the decision not to fire the Long March 5B rocket engine after releasing its payload, therefore sending it into “uncontrolled reentry.”

“Long March 3B Launch,” by Aaxanderr, 2008, public domain creative commons.

Even if the odds were good, since 70% Earth happens to be water, dumping space debris in the ocean whether in controlled or uncontrolled reentry, may not the best practice. Just ask the marine life at 72.47 degrees East and 2.65 degrees North.

“It starts right here – in Maldives.” by Nattu, Male, Maldives, 2008. Image: Creative Commons 2.0, wikimedia.

Controlled reentry aims at a watery grave. Coordinates 48 degrees 52.6 minutes south latitude and 123 degrees 23.6 minutes west longitude mark Point Nemo, or the Oceanic Pole of Inaccessibility. It’s 1,450 nautical miles from anywhere, which is why it is the chosen splash-down spot for space detritus. Between 1971 and 2016, space agencies worldwide crashed 260 spacecraft into Point Nemo: there’s part of the MIR space station, a SpaceX rocket, and over 100 resupply vehicles. Over time we may regret that ditching strategy, no matter how much we believe Point Nemo or the Oceanic Pole of Inaccessibility poses no problems. As water rights develop, the International Seabed Authority (ISA) may rule on Point Nemo.

“Point Nemo or the Oceanic Pole of Inacessibility,” by Timwi 2007. Creative Commons Public Domain. Image: wikimedia.

But most space debris never gets to Point Nemo. There are an estimated 9,000 tones of material circling Earth. Many pieces like old satellites drop out of orbit and burn up before they hit the surface (that’s what happened to Sputnik, the first object in space in October 1957). But even such burning is cause for concern. Little has been done to assess effects on the upper atmosphere, especially consequences of alumina particles that remain trapped and can deplete the ozone layer. The protective layer that keeps Earth from ultraviolet radiation was the subject of the 1987 Montreal Protocol and 2016 Kigali Amendment.

“Image of Depleted Ozone Layer on South Pole Antarctica 2006.” Image credit: NASA. http://www.nasa.gov/vision/earth/lookingatearth/ozone_record.html

Space business is increasing faster than we can keep up in laws and treaties. For example, early laws and conventions spoke only of governments, on the assumption that space was just too expensive for private enterprise. Today, companies like SpaceX are rewriting that text. Space law’s founding documents include the 1967 Outer Space Treaty and the 1972 Space Liability Convention. The first regulates what people can do in space; the second considers how to assign responsibility for activities or objects that cause damage. With satellite constellations like SpaceX and OneWeb launching rapidly, the sky is suffering from traffic, some of it from dead satellites taking of space while waiting to drop, burn, or splash. And we’re putting more up there. As of August 2020, there were 2,787 satellites in orbit (1,364 of those are communication satellites used by business and government). In addition, there are 3,000 dead satellites (and 34,000 pieces of space junk bigger than 10 centimeters and who knows how many particles) still up there, and causing not only traffic but danger.

“Image of Space Debris and Human Spacecraft.” NASA.gov.

We’re only getting started. Since COMSAT began, we’ve sent more satellites, and spacecraft, each year. Estimates now predict 9,000 units by 2025. Some of those will burn, some will splash, and eventually some of them will be retrieved. It’s a new industry. Watch for more laws about what goes up and how it comes down, along with innovations in space sanitation.

Gorman, Alice. “The growing problem of space junk.” 8 May 2021. CNN.com. https://www.cnn.com/2021/05/08/opinions/long-march-5b-space-junk-growing-problem-gorman/index.html

Gorman, Alice. Dr. Space Junk Vs The Universe: Archaeology and the Future. Cambridge: The MIT Press, 2019. ISBN-13: 9780262043434; ISBN-10: 0262043432.

Hunt, Katie. “Mission to clean up space junk with magnets set for launch.” 1 April 2021. CNN.com. https://www.cnn.com/2021/03/19/business/space-junk-mission-astroscale-scn/index.html

Jones, Andrew. “Huge rocket looks set for uncontrolled reentry following Chinese space station launch.” 30 April 2021. Space News. https://spacenews.com/huge-rocket-looks-set-for-uncontrolled-reentry-following-chinese-space-station-launch/

Mosher, Dave. “A spacecraft graveyard exists in the middle of the ocean – here’s what’s down there.” 22 October 2017. Business Insider. https://www.businessinsider.com/spacecraft-cemetery-point-nemo-google-maps-2017.10

Myers, Steven Lee and Kenneth Chang. “China Says Debris From Its Rocket Landed Near Maldives.” 8 May 2021. The New York Times. https://www.nytimes.com/2021/05/08/science/china-rocket-reentry-falling-long-march-5b.html?referringSource=articleShare

O’Callaghan, Jonathan. “What is space junk and why is it a problem?” Natural History Museum, London. https://www.nhm.ac.uk/discover/what-is-space-junk-and-why-is-it-a-problem.html

Paoletta, Rae. “This Is What Legally Happens If An Uncontrolled Rocket Damages Something.” 5 May 2021. The Planetary Society. https://www.planetary.org/articles/uncontrolled-reentry-rocket-damage-space-lawyers-explain

Thompson, Helen. “There’s a Spacecraft Cemetery in the Pacific.” 21 May 2015. Smithsonian Magazine. https://www.smithsonianmag.com/smart-news/theres-spacecraft-cemetery-pacific-180955338

United Nations, Environment Programme, Ozone Secretariat. “The Montreal Protocol on Substances that Deplete the Ozone Layer.” https://ozone.unep.org/treaties/montreal-protocol-substances-depleete-ozone-layer/text

United Nations, Environment Programme, Ozone Secretariat. “The Kigali Amendment.” https://ozone.unep.org/treaties/montreal-protocol/amendments/kigali-amendment-2016-amendment-montreal-protocol-agreed

United Nations. Office for Outer Space Affairs. “Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies. https://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties/introouterspacetreaty.html

United Nations, Office for Outer Space Affairs. “Convention on International Liability for Damage Caused by Space Objects.” https://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties/introliability-convention.html

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

 

February 12, 2021
by buildingtheworld
0 comments

Lunar New Year: Postcard from Mars

Year of the Ox. Image: wikimedia commons.

Lunar New Year and Spring Festival usually bring families together, but in this time of social distancing, many greetings are sent from afar. How about from a distance of 33,000 miles? Year of the Metal Ox occasioned a notable message from Mars: Tianwen-1 celebrated Lunar New Year as China National Space Administration (CNSA) released two videos.

Ingenuity, helicopter for Mars. Image: artist’s rendering for NASA/JPL.

Mars is busy this season because the chance to reach the Red Planet comes only every 26 months. This past summer, China launched Tianwen-1; United Arab Emirates sent the Hope probe, and United States’ Perseverance rover set off for Mars in July with a first made-for-Mars helicopter named Ingenuity. UAE’s Hope will position in orbit to give a complete picture of the planet as a whole system along with its atmosphere. NASA‘s Ingenuity will be the first test flight on another planet, evaluating flying in an atmosphere thinner than Earth’s, preparing for spaceflight when humans venture beyond the moon.

Mars (animated simulation). wikimedia.

Earth and Mars are close neighbors, in terms of space distancing: Earth is the third closest planet to the sun and Mars is the fourth. Earth moves at 67,000 miles per hour around the sun, yielding a 365-day orbit or year. Maris is slower, so Martian year is 687 days. But every 26 months, the alignment of the two planets is optimal. Expect to learn a lot about Mars in the near future.  Suitably named, Tianwen means “questions to heaven” and references a poem by Qu Yuan, poet of ancient China.

Mars missions may be a good venture for the Year of the Metal Ox. The lunar new year system revolves around twelve animals: rat, ox, tiger, rabbit, dragon, snake, horse, goat, monkey, rooster, dog, pig; and five elements: wood, fire, earth, metal, and water. With their separate rotations (similar to Earth and Mars),  animals line up with a particular element only every 60 years. The qualities of the Metal Ox symbolize devotion, diligence, excellence, honesty, and perseverance.

Qi, Lin. “China Post to issue Year of the Ox stamps.” 31 December 2020. China Daily. https://www.chinadaily.com.cn/a/202012/31/WS5fed379fa31024ad0ba9fc8a.html.

Strickland, Ashley. “This summer, multiple spacecraft are launching to Mars. Here’s why.” 29 July 2020. CNN.com. https://www.cnn.com/2020/07/27/world/mars-mission-launches-summer-2020-scn/index.html.

Xinhua. “China’s first Mars exploration mission named Tianwen-1.” 24 April 2020. Xinhuanet.com. http://www.xinhuanet.com/english/2020=04/c_139004464.htm.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

January 28, 2021
by buildingtheworld
0 comments

TRANSPORT/SPACE: Can the Internet fly?

Google/Alphabet Loon. Image: wikimedia

Wave Goodbye to Loon. The visionary project, to beam down the Internet from floating balloons, called it quits. For nine years, Google/Alphabet sent up as many as 35 floating globes – the size of tennis courts – with the goal of transmitting internet capability to areas where land-based infrastructure is not feasible. Of course, the balloons used Google autonomous navigation technology to steer themselves. But this week, the start up wound down. In 2017, when Hurricane Maria wiped out Puerto Rico’s telecommunications system, Loon helped to get the island back online. Another good outcome: Telkom, a telecommunications company in Kenya, inked a deal to bring 4G to remote areas. Because almost half the world does not yet have internet access, it’s a big market. Land-based technologies picked low-lying fruit, but there is still room for growth – above.

Starlink satellites stacked and ready to launch. Image: SpaceX and wikimedia commons.

Flying internet is a rapidly developing sector. Since early days of COMSAT, satellites are proving better vehicles for connectivity, even to what some call “notspots” (Kleinman 2021) with a vision of bringing the whole world online. It’s a movement that recalls the achievements such as the telephone and telegraph (connections were laid under the tracks of the Transcontinental Railroad). Here are some satellite enterprises delivering broadband internet today – and tomorrow:

FLYING INTERNET PROVIDERS

Apple – A plan to develop their own satellites prompted Apple to recruit two Google satellite experts: John Fenwick and Michael Trela will work with Greg Duffy, Dropcam founder who joined Apple recently. Apple may partner with Boeing to launch more than 1,00 low-orbit satellites.

Starlink –  Elon Musk’s SpaceX Starlink will require 42,000 satellites. SpaceX launched 60 satellites on 20 January 2021 to tally 1,015 so far (only 951 are still in orbit). In 2020, SpaceX carried out 14 launches. Possible subscription: $99 monthly fee + $499 for hardware.

OneWeb – Founded in 2014 by Greg Wyler, OneWeb re-emerged from potential bankruptcy with help from Bharti Global and UK government. 648 satellites will form OneWeb network constellation. Development of terminals is with Intellian Technologies and Collins Aerospace. Customers? While at first it was rural folks (OneWeb promises they won’t be overlooked), now it is telecom companies. Second generation satellites will include intelligence and security capabilities. New funding from SoftBank Group Corp and Hughes Network Systems/EchoStar tallied $1.4 billion in funding to put first-generation fleet in place in 2022.

Project Kuiper Constellation  – Funded by Jeff Bezos, Amazon’s satellite project plans to launch 3,236 satellites. In March 2019, Project Kuiper filed with the International Telecommunication Union (ITU), and Federal Communications Commission. The satellite array will orbit at three altitudes: 784 satellites at 367 miles (590 kilometers); 1,296 satellites at 379 miles (610 kilometers), and 1,156 satellites at 391 miles (630 kilometers). The plan is to provide coverage from latitude 56 degrees north to 56 degrees south – that’s where 95% of the world’s people live. (Boyle 2019)

Telesat – With priority Ka-band spectrum rights and a fifty-year history of technical prowess, Telesat Low Earth Orbit (LEO) will link to customer terminals and electronically steered antennas (ESAs) for commercial, government, and military use. The first launch happened in January 2018.

LeoSat – The vision was a constellation of 78 -108 satellites but in 2019 the company laid off its 13 employees after investors dropped support. The investors were Hispasat, Spanish satellite operator, and Sky Perfect JSat of Japan. LeoSat still exists but for now is dormant.

Viasat – This satellite system offers internet access from geosynchronous orbit. New entrants like Starlink, OneWeb, Kuiper, Telesat will use Low Earth Orbit (LEO) for lower latency and lower cost.

03b – Using medium Earth orbit (MEO), this constellation offers fiber-equivalent connection. The prime contractor is Arianespace for the operator SES Networks.

Athena Facebook filed with the Federal Communications Commission to launch Athena to provide broadband access to “unserved and underserved” areas of the world. The filing included a new name: PointView Tech LLC.

Boeing – The aerospace giant plans to launch and operate 147 satellites for a broadband constellation. Apple may help.

Satellites: a traffic jam in the sky? Can astronomers still see the stars? Image: Starlink, initial phase  – wikimedia.

PROBLEMS: Are satellite constellations the new Milky Way, or are we creating the same kind of traffic jam above that we suffer from on land? Some astronomers already report difficulty in seeing the sky. Negative comments from astronomers caused Starlink satellites to come up with a visor that prevents sun reflection, reducing glare – its a sub-company called VisorSat. OneWeb chair Sunil Bharti Mittal pledges environmental stewardship, working with astronomers on issues like reflectivity. (Amos, 2020) And then there is the problem of space debris: getting satellites up is easier than getting them down,

OPPORTUNITIES: Why are so many players entering the flying internet competition. Opportunity: Morgan Stanley projected that “the global space industry could generate revenue of $1.1 trillion or more in  2040, up from $350 billion today.” (Conroy 2019) Of that, $410 billion will come from satellite-based internet services.

GPS Constellation. Image: wikimedia

Amos, Jonathan. “OneWeb satellite company launches into new era.” 18 December 2020. BBC.com

Boyle, Alan. “Amazon to offer broadband access from orbit with 3,236-satellite ‘Project Kuiper’ Constellation.” 4 April 2019. GeekWire. https://www.geekwire.com/2019/amazon-project-kuiper-broadband-satellite/

Foust, Jeff. “SpaceX surpasses 1,000-satellite mark in latest Starlink launch.” 20 January 2021. SpaceNews.com. https://spacenews.com/spacex-surpasses-1000-satellite-mark-in-latest-starlink-launch/

Henry, Caleb. “LeoSat, absent investors, shuts down.” 13 November 2019. SpaceNews.com. https://spacenews.com/leosat-absent-investors-shuts-down/

Kleinman, Zoe. “Satellites beat balloons in race for flying internet.” 25 January 2020. BBC.com/Tech. https://www.bbc.com/news/technology-55770141

Matsakis, Louise. “Facebook Confirms It’s Working on a New Internet Satellite.” 28 July 2018. Wired. https://www.wired.com/story/facebook-confirms-its-working-on-new-internet-satellite/

OneWeb. “OneWeb Secures Investment from Softbank and Hughes Network Systems.” 15 January 2021. https://www.oneweb.world/media-center/oneweb-secures-investment-from-softbank-and-hughes-network-systems

Raymundo, Oscar. “Apple is reportedly looking to put broadband-beaming satellites into orbit.” 21 April 2017. Macworld. https://www.macworld.com/article/3191474/apple-is-reportedly-looking-to-put-broadband-beaming-satellites-into-orbit.html

Yan Huang, Michelle, Bob Hunt, David Mosher. “What Elon Musk’s 42,000 Starlink satellites could do for – and to – planet Earth.” 9 October 2020. Business Insider. https://www.businessinsider.com/how-elon-musk-42000-starlink-satellites-earth-effects-stars-2020-10

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

December 21, 2020
by buildingtheworld
0 comments

SPACE: Rock Hounds bring Finds to Earth

There’s a goddess on the moon and she’s a rock collector. China’s lunar explorer, Chang’e 5, named after the lunar deity, returned four pounds of rocks to Earth this week.

“The Moon Goddess Chang E.” Ming Dynasty Scroll, Metropolitan Museum of Art Acquisition number 1981.4.2. Image: Wikipedia

 

 

 

 

It’s been 44 years between rock collecting expeditions: for the first time since 1976 (Soviet Union’s Luna 24 returned 6 ounces (170 grams), humans reached the lunar surface, collected samples, and headed home with prize specimens. The USA returned moon rocks in 1972. Since making its first lunar landing in 2013, China has achieved notable milestones including the first space probe landing on the far side of the moon in 2019. Change’e 5 brought 4.4 pounds (2 kilograms) of lunar material back, landing in the Inner Mongolian Autonomous Region landing site on 16 December 2020. Some was surface rock, but a probe mechanism also collected material from 6.5 feet (2 meters) underground.

“Chang’e 5 Assembly, leaving CZ-5 rocket.” China News Agency. Image: wikimedia.

We may be in what some call a “golden age” of sampling from space. In addition to moon samples, we have retrieved interplanetary material from NASA‘s Stardust that returned samples from the tail of Comet 81P/Wild 2, and Genesis mission that sampled solar wind. JAXA’s Hayabusa that brought samples from asteroid Ryugu in December 2020; NASA’s OSIRIS-Rex visit to asteroid Bennu will return material (in 2023). Meanwhile, in 2021, we expect China’s Rianwen-1 to reach Mars, and Russia’s Lunar-24 to revisit the moon. JAXA’s Martian Moon Exploration (MMX) mission will soon return samples from Martian moon Phobos.

Hayabusa in hover mode. Image: JAXA. Wikimedia commons.

What did Chang’e find on the moon? The legendary goddess told a tale of global warming involving the heat of 10 suns. Perhaps rocks from the moon may shed light on Earth’s plight. As for the Chang’e mission, Pei Zhaoyu deputy director of China National Space Administration (CNSA) stated: “We hope to cooperate with other countries to build the international lunar scientific research station, which could provide a shared platform for lunar scientific exploration and technological experiments. ” Earlier, Johann-Dietrich Woerner, then director general of European Space Agency (ESA) suggested building a village on the far side of the moon to replace the aging International Space Station: “Partners from all over the world contributing to this community with robotic and astronaut missions and support communications satellites.” Frank P. Davidson, co-founder of Camp William James of the CCC, envisioned a program called Lunar U. Should there be a lunar study-abroad program for students, too?

“Moon and International Space Station.” That’s ISS in the lower right of the photo. Image: NASA.gov. Wikimedia.

Elin Urrutia, Doris. “We may be in a ‘golden age’ of sample-return space missions.” 5 December 2020. Space.com. https://www.space.com/golden-age-space-sample-retrieval-missions.html

Hauser, Jennifer and Zamira Rahim, “China’s Chang’e-5 lunar probe successfully delivers moon samples to Earth.” 16 December 2020. CNN.com. https://www.cnn.com/2020/12/16/asia/china-lunar-probe-intlindex.html

Quirke, Joe. “European Space Agency proposes village on far side of the moon.” 15 July 2015. Global Construction Review. https://www.globalconstructionreview.com/news/european-spa8ce-age6ncy-8p0r6o4p2os8e0s6-4v2i0l8la/

Xinhua. “China’s Chang’e-5 spacecraft brings home moon samples.” 17 December 2020. www.xinhuanet.com/english/2020-12/17/c_139595181.htm

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

 

 

There are plans in development for lunar base establishment; some aspects will be scientific, other may be commercial.

December 10, 2020
by buildingtheworld
0 comments

SPACE: Treasure Box Tamatebako delivered by Peregrine Falcon

“A peregrine falcon,” by photographer jam.mold 2015. Image: wikimedia commons.

A peregrine (Hayabusa is named after the falcon) flew 3.25 billion miles from Earth to explore asteroid Ryugu and carry back a certain treasure box that may open the secrets of the Solar System and the origins of Earth.

Leaving Earth in December 2014, Hayabusa2 first explored Ryugu from orbit, then scraped the surface to comb some samples, and finally sent small explosives into the asteroid’s rocky surface to blast a crater, collecting sub-surface samples. The precious pieces of debris were deposited into a capsule: that’s the treasure box. In December 2020, Hayabusa2 swooped over Woomera, South Australia, dropped the treasure box capsule, and proclaimed “I’m home.”

“Hayabusa2 seen with Earth in background.” 2018. Image: wikimedia.

After six years, it’s now a rush job to get the capsule back to JAXA (Japan Aerospace Exploration Agency) before any Earth air might leak in, because “There is no perfect sealing,” according to Dr. ShigoTachibana, principal investigator. First stop on the way home? A field lab on an Australian Airforce Base, reached via helicopter from capsule touchdown site. There, a special instrument extracts from the capsule any gases that may have been shaken out of the rock bits by the jarring flight and landing. Then, the treasure box continues via jet plane to JAXA’s lab. Eventually, samples will be shared around the scientific world.

Why all this interest in asteroids? They’re not even mentioned in the Outer Space Treaty. Asteroids are relics from billions of years ago – same time Earth was being formed. Asteroids are bits that didn’t latch onto any planet but instead just continued to spin out into space. There are millions of asteroids in a belt between Mars and Jupiter. Asteroids like Ryugu could tell us how life on Earth began, and how the Solar System evolved. Some asteroids may have commercial value: one is thought to contain platinum, worth $50 billion.

“The Asteroid Belt between Mars and Jupiter contains millions of asteroids.” Image: wikimedia.

JAXA’s not the only rock hound in space. NASA’s OSIRIS-REx explored and sampled asteroid Bennu recently; those samples will arrive in 2023. Scientists from both Bennu and Ryugu teams plan to meet, compare findings, and share samples. Other scientists around the world will participate: “Different labs contribute different expertise, which all helps in understanding the material collected and what that tells us about the formation and evolution of the Solar System,” stated Dr. Sarah Crowther of Manchester University. Professor Sara Russell, of the planetary materials group at London’s Natural History Museum, commented: “We think that this asteroid may have organic material and water which can give us information about how these things were delivered to the early Earth.” (Rincon, 2020) Hayabusa2 is not finished: after coming within 125 miles of Earth to drop the capsule, the peregrine flew towards its next destination – 1998 KY26, an asteroid discovered in 1998 and so tiny it completes a rotation day  every 10.7 minutes. While mainly a fly-by,  KY26 may yet yield treasure: the falcon kept one probe, just in case. For a video of Hayabusa2 and the mission, watch here.

“Urashina Tarō hand scroll showing the winter side of the palace Ryūgū-jō.” Origin: Japan. Image: Bodleian Library, Oxford University. wikimedia commons.

Flying a robotic intelligent vessel billions of miles, taking measurements and readings and tiny precise samples from far away rotating celestial locations, may be a mythic feat. Mythic feats deserve mythic names. Ryūgū-jō is the palace of Ryūjin, dragon king of the deep sea. In the Japanese myth of Urashina Tarō, a human fisher rescues a turtle, who gives the rescuer magic gills, and brings the fisher to the Ryūgū-jō. The turtle then transforms into a princess. Princess Otohime gives Tarō a tamatebako or “treasure box” upon the human’s return to Earth. In this space odyssey re-enactment, asteroid Ryugu is the palace, and we’re about to find out what’s in that treasure box.

“A Treasure Chest” 2009, graphic design by badaman. Wikimedia commons.

Chang, Kenneth. “Japans’s Journey to an Asteroid Ends With a Hunt in Australia’s Outback.” 5 December 2020, updated 7 December 2020. https://www.nytimes.com/2020/12/05/science/japan-asteroid-hayabusa2-woomera.html?referringSource=articleShare

Edwards, Jim. “Goldman Sachs: space-mining for platinum is ‘more realistic than perceived.'” 6 April 2017. Business Insider. https://www.insider.com/goldman-sachs-space-mining-asteroid-platinum-2017-4.

Japan Aerospace Exploration Agency (JAXA). “Video for the extended mission.” https://www.hayabusa2.jaxa/jp/en/topics/20201116_extMission/

Lang, Kenneth R. “1998 KY26.” 2010. Tufts University. https://ase.tufts.edu/cosmos/view_picture.asp?id=749

Lies, Elaine. “Asteroid sample arrives in Japan after six-year space odyssey,” 8 December 2020. Reuters.com. https://www.reuters.com/article/us-space-exploration-japan-layabusa2-idUSKBN2810NU.

Lusk Brooke, Kathleen and Zoë Quinn. “Space: Hayabusa touchdown on Ryugu.” 21 September 2018. https://blogs.umb.edu/buildingtheworld/2018/09/21/space-hayabusa-touchdown-on-ryugu/

Redd, Nola Taylor. “Asteroid Belt: Facts & Formation.” 5 May 2017. Space.com. https://www.space.com/16105-asteroid-belt.html.

Rincon, Paul. “Hayabusa-2: Rocks from an asteroid set for delivery to Earth.” BBC.com. 6 December 2020.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

Skip to toolbar