Building the World

June 29, 2022
by buildingtheworld

SPACE: Sunny Side UP

“Solar Dynamics Observatory (SDO) Shows Sun’s Rainbow of Wavelengths.” NASA, 2013. Image based on SDO data. Wikimedia. Public Domain. Included with appreciation to NASA.

It’s summer, season of the sun. On June 29, 2022, Nasa‘s Solar Dynamics Observatory (SDO), usually monitoring the sun for signs of solar radiation that affect Earth, saw something new. A solar eclipse cloaked 67% of the orb, backlighting mountains on the moon. The sun is a central part of our system, both on Earth and in space: hence the name (from Latin for sun, “sol”) solar system.

“Solar energetic particles” by NASA STEREO. Creative Commons 4.0. Included with appreciation to NASA.

Space weather affects Earth in many ways. One example is the impact on satellites, or even terrestrial power lines, when the sun’s corona releases charged particles. As we send more satellites into orbit, the sun’s particle emissions and radiation will become increasingly important.

“Aurora Australis From ISS.” Aurora Borealis and Australis can be seen from the International Space Station (ISS). This image was taken by ISS crew on 21 June 2010. Image: wikimedia, public domain. With appreciation to ISS.

On a more aesthetic note, these are the same particles that cause the Northern Lights.

Dobrijevic, Daisy. “Space weather: What is it and how is it predicted?” 24 June 2022.

Howell, Elizabeth. “NASA sun mission spots stunning solar eclipse in space.” 29 June 2022.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

February 3, 2022
by buildingtheworld

SPACE: International Space University

NASA astronaut Karen Nyberg aboard ISS in 2017. In 2031, could this be you, studying science in an international space university? Image: NASA 2017. Public Domain: wikimedia.

In 2030, the International Space Station will be “relocated.” Where? Point Nemo: the most remote from land area of the ocean. NASA announced the transition “De-Orbit” plan, along with goals for the next decade. Future space goals include:

Enable Deep Space Exploration

Conduct Research to Benefit Humanity

Foster a U.S. Commercial Space Industry

Lead and Enable International Collaboration

Improve Humankind

While NASA’s statement praises the International Space Station (ISS) for two decades of scientific, technological, and diplomatic achievements including “biological, physical, biomedicine, materials, and Earth and space science,” the next decade is to continue science while “laying the groundwork for a future in Commercial LEO (Low Earth Orbit) Destinations by 2030.” (NASA January 2022)

Commercial enterprise in space includes Axiom. “Logo of Axiom Space,” public domain, wikimedia commons.

Speaking of the Commercial Leo Destinations (CLDs) by 2030, NASA makes a clear statement: space is moving from diplomatic cooperation to commercial collaboration. Recognizing the “over 20 commercial facilities operating aboard ISS today,” NASA names several enterprises (investors, take note) including: Axiom Space, Blue Origin, Nanoracks, and Northrop Grumman Space Systems. Yet, NASA’s comment that “the ISS remains the sole example of how an international team can productively and successfully cooperate over the course of decades in space” leaves open the question of how such cooperation may continue.

“University of Karachi” photograph by M. Yousuf Siddiqui, Creative Commons 4.0, wikimedia. Thank you to M. Yousuf Siddiqui for inclusion of this image.

Is there now an opening for a consortium of universities (by their very name, “universes” that are centers of inclusion) to plan an educational, research-based, international space university? Such a center of learning could continue the ISS vision, even as space’s sole center of international cooperation plans to transition. While private enterprise is a leader in innovation, commerce is proprietary. There remains a need for at least one place in space that belongs to all of those on Earth who share, equally, in the promise of space. If you were to found and name a university in space, what are your ideas?

NASA. “International Space Station Transition Report: pursuant to Section 303 (c) (2) of the NASA Transition Authorization Act of 2017 (P.I., 115-10). January 2022.

Newman, John Henry. The Idea of a University. 2016. Download free, Gutenberg.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

January 29, 2022
by buildingtheworld

SPACE: Do Look UP – Citizen Scientists Needed NOW

Do Look UP. Nasa invites your views as a citizen scientist. Image: “Lucas Bornhauser,” by photographer Lucas Bornhauser, luboco, 2016. With appreciation. Wikimedia commons.

Leonardo DiCaprio, Jennifer Lawrence, Meryl Streep, Cate Blanchett, Ariana Grande, Tyler Perry and others star in the science fiction noir comedy “Don’t Look Up” by Adam McKay. It’s an allegory about climate change, government, politics, and media. The film set a Netflix record for the most views in a single week: maybe you have seen this movie. If you are among those, like DiCaprio and others, who are concerned about climate change, you may wonder what you as an individual can do. NASA has an invitation for you. Do Look UP!

“Don’t Look Up” Poster. Image wikimedia. Souce With appreciation to the film team and impawards.

GLOBE CLOUD CHALLENGE welcomes citizen scientists to use the GLOBE Observer to identify clouds in their own area, timing observations with satellite flyovers. Satellites have a hard time identifying clouds, but these formations are easily seen from Earth. NASA hopes to collect 20,000 cloud observations.

“Cirrus clouds: sky panorama.” by Fir002/Flagstaffotos. Image: wikimedia. CC by NC. With appreciation.

What are clouds and why do they appear? Formations of water vapor change into gas that condenses with dust or salt from sea spray to form liquid or ice: when the accumulation is sufficient, a cloud happens. Even if you’ve never flown through a cloud, you’ve probably walked through one: on land, the same process produces fog.

“Fog Particles at Night” by Bill Larkins, 2011. Image: creative commons CC by SA 2.0 wikimedia. With appreciation.

High, thin clouds let sunlight through yet still prevent heat from escaping to space via infrared radiation: there is a net warming result. Low, thick clouds reflect sunlight but have no impact of infrared radiation: there is a net cooling effect. Without clouds, we’d have a much warmer planet. With climate change and global warming, clouds are very much part of the solution.

“Infrared image of storm clouds over central United States from GOES-17 satellite,” NOAA, 2018. Image: public domain. With appreciation to NOAA.

NASA’s cloud-observation satellites include Aqua, Aura, Calipso, CloudSat, and Terra fly over the Earth. Soon, the data will be matched with NOAA’s GOES-T. Clouds are one of the aspects related to climate change. According to Marilé Colón Robles, lead atmospheric scientists for the Clouds team at Langley Research Center, “Each cloud affects Earth’s energy balance differently.” (NASA 2022)

“Cloud types” by Valintin de Bruyn, for Coton, 2012. Image: wikimedia. With appreciation.

Here’s how to participate. Download the GLOBE Observer APP (available to those in 120 GLOBE member countries. Register as an observer, and then go outside and look UP. The challenge runs until February 15, 2022. After that, keep the app active: as a citizen scientist, you can also use the app to observe and report on three other categories: mosquito habitat mapping, land cover, and trees. Here’s the link:

“The five components of the climate system all interact.” by Fernkemilene, 2019. Creative commons CC by SA 4.0. With appreciation,

If you are not able to go outside, you can still participate. With the NASA GLOBE CLOUD GAZE app, you can look at photos, identify cloud types, and tag via a Zooniverse online platform. Here’s that link:

“Charged Cloud.” animation by NOAA, 2016. Public Domain. Creative Commons. With appreciation.

NASA. “NASA GLOBE Cloud Challenge: 2022: Clouds in a Changing Climate.” 12 January 2022.

NOAA. “Clouds and Climate.”

Pearce, Fred. “Why clouds are the key to new troubling projections on warming.” 5 February 2020. Yale Environment 360.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

December 28, 2021
by buildingtheworld

SPACE: Journey to the beginning of the universe

James Webb Space Telescope. Image:

NASA launched the James Webb Space Telescope has successfully unfolded its gimbaled antenna assembly with the data dish that will beam back information about the earliest stars in the universe. Webb will take 29 days to reach the Lagrange Point 2 (L2) that is 1 million miles (1.6 kilometers) from the launch base on Earth. The Webb telescope, costing $10 billion, is considered the successor to Hubble. The upgrade is significant: Hubble could pick up only visible and ultraviolet light. James Webb Space Telescope (JWST) uses infrared detectors and spectroscopes.

An image from Hubble. James Webb is expected to offer even better views. Image:

Developed by NASA, with contributions by European Space Agency and Canadian Space Agency, with manufacturers Northrop Grumman, and Ball Aerospace who built the primary mirror, the new telescope is named after James E. Webb, NASA administrator from 1961-1968 who played a pivotal role in the Apollo lunar program, directing advances to serve education and science. It is interesting to note that Webb was not a scientist, but an attorney and business leader who had served in the public and private sectors. Webb almost turned down the job, but President John F. Kennedy convinced him that he had the right skills for a broad program with significant missions. You can listen to the audio of President John F. Kennedy and James Webb as they discuss human spaceflight: here.

James Webb Space Telescope is on its way. Illustration by Kevin Gill. Creative Commons license CC by SA 2.0. Image: wikimedia.

The James Webb Space Telescope is expected to open a new era in space and science. What would you like to discover about the beginning of the universe? To track the Webb as it travels towards its goal, click here.

NASA. James Webb Space Telescope. Goddard Space Flight Center.

NASA. James Webb Space Telescope is fully deployed. UPDATE:

Pultarova, Tereza. “James Webb Space Telescope: The scientific mysteries no other observatory could unravel.’ 24 December 2021.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

November 18, 2021
by buildingtheworld

SPACE: Debris

“Space Debris” Image: NASA Debris-GEO1280, 2005. Image: public domain. wikimedia and

Space just got more crowded, and dangerous. When Russia shot at one of its older, Soviet-era, satellites (Kosmos-1408 had been orbiting Earth since 1982)  to test a space weapon, the hit on the target blasted over 1,500 shards of debris into space. While other nations quickly condemned the test, China, India, and the US have also tested antisatellite missiles: the practice is so established that it has its own acronym: ASAT.

“Animation of GPS satellite’s orbit from 15 May 2013 to 6 September 2018” by Phoenix7777, 2018. Based on data of NASA and JPL. Image: wikimedia commons. Included here with appreciation to Phoenix7777.

Why is space debris a problem? At 17,500 miles per hour, even a paint chip becomes a lethal weapon. There are more than 100 million pieces of space junk bigger than one millimeter, with 27,000 larger than a softball (NASA 2021) and therefore more dangerous. There is no current method for vacuuming up space junk: some developing innovations include giant nets to capture shards as demonstrated by the RemoveDEBRIS or shoving devices that could push the pieces high enough into the distant atmosphere where they could safely disintegrate.

If space debris hit the cupola of the International Space Station, there could be great danger. In 2021, ISS astronauts were commanded to take cover during the ASAT test. Photograph by Scott Kelly, astronaut, 4 June 2015. Image courtesy of NASA, included with appreciation to Scott Kelly.

When KOSMOS-1408 disintegrated into flying debris, International Space Station astronauts received warnings to duck and cover. No harm occurred – this time. But collisions with space junk could destroy satellites, space stations, and space vehicles: crashes between orbiting debris chunks are also ominous possibilities that grow, as orbiting pieces increase, into probabilities. NASA and US Department of Defense’s Space Surveillance Network tracks 8,000 pieces most likely to cause problems.

“Dome of Hale Telescope at Palomar Observatory,” by Coneslayer 2007. Image: wikimedia.

Space satellites began with Sputnik, proliferated with COMSAT, and now number 3,372 as of January 2021, with 1,897 belonging to the US. Want to see some celestial traffic? In Massachusetts, visit the Gilliland Observatory at the Museum of Science. Harvard College Observatory, part of the Harvard-Smithsonian Center for Astrophysics, offers options. University of Massachusetts Lowell hosts viewing from the Schueller Astronomical Observatory. Or, visit one of the 25 best observatories in the US for an out-of-this-world vacation.

Grush, Loren. “Satellite uses giant net to practice capturing space junk.” 19 September 2018. The Verge.

Harvard-Smithsonian Center for Astrophysics.

Heilweil, Rebecca. “The space debris problem is getting dangerous.” 16 November 2021. Recode.

NASA. “Space Debris and Human Spacecraft.” 26 May 2021.

RemoveDEBRIS. University of Surrey, UK.

SpaceX. “Starlink Satellite Launch.” VIDEO

University of Massachusetts Lowell. Schueller Astronomical Observatory.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

August 20, 2021
by buildingtheworld

SPACE: Keeping an Eye on Climate Change

“Animation showing changes in Iris,” by Sagyxil, 6 February 2010. GNU open license. Image: wikimedia.

The Intergovernmental Panel on Climate Change (IPCC) confirmed our worst fears: the world may be losing the battle of climate. Some effects of global warming are permanent and irreversible, like sea-level rise. When the Greenland ice sheet melts, it will not refreeze. There are other effects that may ultimately reverse, but will take centuries to do so: oceanic acidification and deoxygenation, melting of permafrost, air pollution.

“Earth seen from Space,” by DLR: German Aerospace Center, 23 July 2012. Image: wikimedia.

It’s not all totally bad news: there may still be a window. The question is how to use our limited remaining time most wisely? According to Peter Huybers, professor of earth and planetary sciences at Harvard: “There are notable opportunities to increase our rate of learning about the climate system by developing a constellation of satellites to monitor the flow of energy in and out of the Earth system. Another constellation of satellites could monitor greenhouse gas fluxes for purposes of better holding nations accountable for their emissions.” (Huybers and Mulcahy, 2021)

“Earth’s seasons, seen by satellite.”

When Sputnik launched in 1957 and COMSAT followed in 1962 , we developed capability to see Earth as a whole, dynamic system.  Science fiction always depicted space as a place to explore, maybe to inhabit, perhaps even an exit strategy from a failing Earth. But space may turn out to be the place from which T.S. Eliot’s words might come true in a new way:

“We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.”

T. S. Eliot

Eliot, T. S. “Little Gidding,” from Four Quartets. Originally published in 1943.

Huybers, Peter and Christopher Mayer. “The Near-Term Impacts of Climate Change on Investors.” Tamer Center for Social Enterprise, Columbia University Business School. VIDEO:

Mulcahy, Ryan. “Climate scientist on UN report: Just as bad as we expected.” Interview with Peter Huybers. 12 August 2021. The Harvard Gazette.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

July 27, 2021
by buildingtheworld

SPACE: Big Ticket to Ride

“Movie poster of documentary SPACE TOURISTS,” by Christian Frei, 2009. Original image at Public domain.

Ride with Bezos? Price still unknown – the only ticket was auctioned for $28 million: for a ten minute ride, Blue Origin’s meter runs fast as a rocket. Fly with Branson? Over 600 seats on Virgin Galactic are pre-sold, going for $200, 000 to $500, 000 for a hour’s excursion. Prefer a longer stay? A space vacay to the International Space Station by Elon Musk and SpaceX: $55 million. There are other costs – environmental.

“First successful flight of the Wright Flyer: traveled 120 ft. (36.6m) in 12 seconds, on 17 December 1903. Image: Library of Congress, ppprs.00626

One way to evaluate financial, and environmental, costs of private space travel could be to look back to 17 December 1903 when the Wright Flyer took off from Kitty Hawk. In December 1944, the Convention on International Civil Aviation  established rules for civil aviation: stated goals were safety and international cooperation. In 2004, the world had 900 airlines, tallying 22,000 aircraft serving 1,670 airports. (Spaceports, overseen by the Federal Aviation Administration, are now in high construction demand.) In 1960, civil aviation flew 100 million people; by 2017, 4 billion passengers.  In 2019, revenues in the global aviation industry reached $838 billion. However, passenger air travel spikes the highest (and fastest) growth in individual emissions. Flight shaming (flygskam) is a resulting development. Branson and Bezos both drew criticism for spending funds on space tourism when there is a world in need below.

“A simulation of ACRIMSat (Active Cavity Radiometer Irradiance Monitor Satellite)” by NASA/JPL, 2006. Public domain.

Commercialization of space might also be examined through the development and expansion of satellites. COMSAT, the first commercial satellite operator, began with Intelsat and Inmarsat. When “Early Bird” launched in 1965, the Communications Satellite Act had just established a policy for a commercial communications satellite system open to many nations cooperatively. Comsat began with a $5 million line of credit. Sales by 1996 were $1 billion. Launching satellites produces carbon pollution, and also another kind of pollution: traffic. As of 1 August 2020, there were 2,787 satellites orbiting Earth – 1,364 of them communications satellites both government and commercial.

What can we do to reduce space emissions pollution? Image: “Space Shuttle launched with two solid-fuel boosters (SRB.” NASA, 1981, public domain.

Branson’s Virgin Atlantic, a commercial airline, ferries passengers worldwide, diluting the energy burden per seat. But Virgin Galactic carries just six, tallying a much higher per-person emissions cost; the one-hour flight is equivalent to driving a typical car around the Earth. One concern is the type of fuel used by Virgin Galactic: the system runs on a kind of synthetic fuel that burns with nitrous oxide, shooting black carbon into the stratosphere. Blue Origin uses liquid hydrogen and liquid oxygen, causing 750 times less climate-forcing magnitude than Virgin’s (Ahmed 2021). SpaceX will bring four passengers to space in September, causing the equivalent of 395 transatlantic flights worth of emissions.

“Image of depleted Ozone Layer at South Pole, Antarctica” by NASA, 2006. Image: public domain.

Space tourism projects market growth of 17% each year in the coming decade. Price-per-flight will be reduced, and innovations will increase. Just as SpaceX introduced reusable rockets, a game-changer for the space industry (landing 44 of 52 attempts), and Axiom is planning to launch its own commercial space station at the cost of $1.8 billion to NASA’s $150 billion for the International Space Station, privatization of space will streamline the industry. But because rockets emit 100 times more CO2 per passenger than flights (Marais 2021), and because rocket exhaust is released directly into the atmosphere from a higher point of entry, the ozone layer (earlier protected by the 1987 Montreal Protocol) may be again under threat.

Aviator Amelia Earhart and Purdue University President Edward C. Elliott, with Lockheed Electra, 1936. Image: public domain.

Some feel private space commercialization may be a misuse of resources more urgently needed on Earth; others predict important innovations will follow July 2021’s first commercial space tourism flights. Some of the most important developments must be in fuel options and emissions management. Will commercial space flight learn from civil aviation? Bezos’ Blue Origin space tourists brought little carry-on luggage, but two significant items hitched a ride: Amelia Earhart‘s goggles, and a piece of canvas from the Wright Flyer.

Ahmed, Issam. “Environmental concerns grow as space tourism takes off.” 18 July 2021.

Amelia Earhart Hangar Museum.

CNBC. “Blue Origin launch re-cap.” 20 July 2021.

Federal Aviation Administration (FAA). “Spaceports by State.”

Johnson, Dave. “11 of the biggest innovations shaping the future of spaceflight today.” 12 October 2019. Business Insider.

MacMartin, Douglas G. and Ben Kravitz. “Mission-driven research for stratospheric aerosol geoengineering.” 22 January 2019. Proceedings of the National Academy of Sciences of the United States of American (PNAS).

Marais, Eloise. “Space tourism: rockets emit 100 times more CO2 per passenger than flights – imagine a whole industry.” 19 July 2021. The Conversation.

Pollard, James. “What is the Environmental Impact of Private Space Flight?” 20 July 2021.

Reference for Business. “COMSAT Corporation.”

Ross, Martin N. and Dorin W. Toohey. 24 September 2019. “The Coming Surge of Rocket Emissions.” 24 September 2019. EOS, 100. https://doiorg/10.1029/2019EO133493

Smithsonian National Air and Space Museum. “1903 Wright Flyer.”

United Nations. “Montreal Protocol on Substances that Deplete the Ozone Layer.” 16 September 1987.

July 20, 2021
by buildingtheworld

This SPACE for Sale or Rent

“Atmosphere Layers, showing the Kármán Line.” What’s for sale or rent? Image: based on the work of Theodore von Kármán, vectorized by NOAA and Mysid, 2014. Public domain: wikimedia commons.

When Apollo 11 placed the first people on the moon, on 20 July 1969, NASA might have known the price per person, but seats were not for sale, or rent.

On 20 July 2021, privatization of space demonstrated an aspect of commerce: market pricing, open bidding, for sale or rent. Jeff Bezos, founder of Amazon and Blue Origin, auctioned a seat on today’s ride. When the anonymous highest bidder ($28 million) backed out, citing other commitments, the place went to next-in-line Joes Daemen, CEO of Somerset Capital Partners. Daemen in turn bounced the ball to his son, Oliver Daemen, who will become the youngest person ever to go to space.

Space tourism is having a moment. On 11 July, Richard Branson flew aloft on Virgin Galactic for a view of Earth and a glimpse of space: also aboard were three Virgin staff and two crew pilots. On 20 July, Blue Origin’s New Shepard carried Jeff Bezos, brother Mark Bezos, and two other passengers: 82-year-old Mary Wallace “Wally” Funk and 18-year-old Oliver Daemen for 10 minutes of rocket tourism.

Flying to the Kármán Line (100 kilometers: 54 nautical miles/62 miles above Earth, the point considered to be the beginning of space) is not cheap, but prices vary. What’s the cost per passenger for space tourism? Yet unknown. Bezos is funding Blue Origin, founded in 2000, with share sales of Amazon stock, selling 1.85 billion worth of shares in May 2021. Bezos donated the $28 million auction proceeds to a charitable outreach: Club for the Future. Branson filed to sell $500 million in Virgin Galactic shares after the July flight, sparking a brief halt in the stock’s trading. Virgin Galactic currently has 600 reservations for space tourism flights: pricing ranges from $200,000 to $400,000, depending upon date of purchase. To date. Blue Origin has sold seats by auction: scheduled pricing is to follow. SpaceX, founded by Elon Murk, will also carry paying passengers: three people paid $55 million each for a 10-day tour to the International Space Station.

There are some who question the ethical and environmental costs of private space. Should billionaires like Bezos, Branson, and Musk spend their money flying to space or solving problems on Earth? What about the emissions of space vehicles carrying not scientific experiments but joy-riding millionaires?

Others point out that innovation often starts with entrepreneurial investment. Early in the 20th century, in 1903, the Wright brothers flew at Kitty Hawk.  In 2003, air transport generated 13.5 million jobs and significant contributions to GDP around the world. What innovations might we see from space tourism in this century? How will Virgin Galactic, SpaceX, and Blue Origin influence development in space? Watch Blue Origin’s voyage here.

In the next post, we’ll take a closer look at the costs of private space: environmental and financial.

Blue Origin.

Fitzgerald, Maggie. “Virgin Galactic falls 17% after it gets set to sell $500 million in stock following Branson’s successful flight.” 12 July 2021. CNBC.

Gershgorn, Dave. “How much is a ticket on Blue Origin? Jeff Bezos reveals new details. Let the bidding begin…”

Klueger, Jeffrey. “Wally Funk Is Going to Space Aboard Jeff Bezos’s Rocket. Here’s Why That Matters: A flight 60 years in the making.” 18 July 2021. TIME magazine.

Morrow, Allison. “Someone spent $28 million for a seat on the Bezos space flight and now they’re bailing because they’re busy.” 15 July 2021. CNN.

Palmer, Annie. “Bezos sells nearly $2 billion worth of Amazon shares.” 5 May 2021. CNBC.


Taylor, Kiara. “How to Buy SpaceX Stock.” 14 May 2021. 

Virgin Galactic. Stock ticker NYSE: SPCE.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

July 15, 2021
by buildingtheworld

Private SPACE

“White Knight Two and SpaceShip Two from directly below.” by Jeff Foust, 22 October 2010. Image: Wikimedia Commons 2.0 Attribution. Thank you to Jeff Foust.

Space, once the faraway realm of governments and agencies like NASA that sent the first team to walk upon the moon, has now officially gone private. On 11 July, founder of Virgin Airways and Virgin Galactic, Richard Branson became the first individual to go to outer space in a vehicle the entrepreneur helped to fund. Branson, Sirisha Banda, Colin Bennett, and Beth Moses took off from Truth or Consequences (a town renamed for a game show) New Mexico, USA, on SpaceShipTwo, a dual-winged plane with a single rocket called WhiteKnight Two. Pilots, also aboard, released the rocket and the passengers zoomed upward with three Gs of force. When the spacecraft reached 50 miles high (the official definition of outer space), SpaceShipTwo rolled over onto its belly where windows allowed the passengers to see space – and Earth. It was just this view that occasioned the 1987 World Commission on Environment and Development report: “Our Common Future.” What is the shared future of public and private space?

Illustration: “SpaceX Crew Dragon approaches International Space Station for docking.” by Nasa/SpaceX, 26 July 2018. Image: Creative Commons 2.0 Attribution. Thanks to Nasa/SpaceX.

Richard Branson, Jeff Bezos, Elon Musk represent a new kind of space: private space. Branson’s Virgin Galactic was first with tourism. SpaceX, founded by entrepreneur Elon Musk, regularly goes to the International Space Station. Asteroid exploration and mining advances are progressing with Planetary Resources, Inc – note the suffix. Blue Origin, founded by Jeff Bezos of Amazon fame, will be next, when Bezos launches into space for a day-trip with his brother Mark, and a mystery passenger who outbid 7,600 competitors with the sum of $28 million for the ride scheduled for 20 July  –  anniversary of the Apollo 11 lunar landing. (Bezos is turning the sum into a donation – more on that in the next post in this series.)

“Buzz Aldrin on the moon with Neil Armstrong seen in the helmet’s reflection.” 21 July 1969. Credit: and wikimedia commons 9/98/Aldrin_Apollo_ll_original.jpg.

Neil Armstrong and Buzz Aldrin set foot upon the moon on 20 July 1969, shortly after the the Outer Space Treaty, had been signed in 1967. The Outer Space Treaty assumed, at the time, that only governments would or even could have the expertise – not to mention the funds  – to develop the orbital frontier.  The Center for Air & Space Law at the University of Mississippi School of Law observes that space laws and treaties did not anticipate privatization of space travel. How can public and private space share a common future? What should be added to the Outer Space Treaty?

Branson, Richard. #Unity22. VIDEO:

Center for Air and Space Law.

Davenport, Christian. “A seat to fly with Jeff Bezos to space sells at auction for $28 million.” 12 June 2021. The Washington Post.

Wattles, Jackie. “First to the Future: Virgin Galactic founder Richard Branson successfully rockets to outer space.” 12 July, 2021. CBS.

Wheeling Kate. “Outer Space Treaties didn’t anticipate the privatization of space travel. Can they be enforced?” 14 August 2019.

World Commission on Environment and Development. “Our Common Future.”

United Nations. “Outer Space Treaty.”

“Private SPACE” is part of a series on space privatization. Next, “Blue Origin.”

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

May 17, 2021
by buildingtheworld

SPACE: Red Traffic

“Riding dragon gods” illustration from Myths and Legends of China by E.T.C. Werner, 1922. Image Project Gutenberg.

Not only is the sky getting crowded with satellites, some working and others defunct but still orbiting, the planets are seeing traffic. This weekend, China landed on Mars, after arriving in orbit on 10 February. China’s Tianwen-1 mission features an orbiter, lander, and rover named Zhurong (Chinese god of fire). Watch the landing here.

“Diagrama of the Perseverance Rover with Instruments.” NASA. 17 June 2020. Image:

Red Planet traffic includes: NASA’s rovers Curiosity and Perseverance. (Preceded by Spirit and Opportunity in 2004). Decades ago, NASA’s Viking 2 lander touched down on Utopia Planitia, a basin thousands of miles wide in the northern area of Mars. That’s the same place China landed this weekend. Scientists hypothesize that Utopia Planitia may have once been an ocean, so it’s a good site to look for signs of life. In fact, water may still be there – under the surface. NASA’s Reconnaissance orbiter detected ice there in 2016; there may be as much ice as Lake Superior. That’s good news for a number of reasons including potential for agriculture, habitation, and power. Besides China and the USA, other contributors to the study of Mars include Argentina, Austria, the European Space Agency (ESA), and France. Also in the Martian traffic pattern: Hope, an orbiter sent by the United Arab Emirates, arrived in the neighborhood on 8 May and is observing atmosphere and weather, recently releasing images of hydrogen atoms around Mars on 24 and 25 April 2021.

“Animation of Emirates’ Mission around Mars.” Image: wikimedia.

Will traffic on Mars continue to increase? Only every two years. There is a timing window when Earth and Mars are closest, and that is why there is so much activity now. While most traffic is on land, NASA’s Ingenuity, a helicopter, has been logging flight time in the Martian atmosphere – the first time (that we know of…) anyone has flown on the Red Planet.

Goswami, Namrata and Peter A. Garretson. Scramble for the Skies: The Great Power Competition to Control the Resources of Outer Space. 2020: Lexington Books. ISBN: 978498583114 and 9781498583121.

Hope Mars Mission. @HopeMarsMission.

Myers, Steven Lee and Kenneth Chang. “China’s Mars Rover Mission Lands on the Red Planet.” 14 May 2021, updated 16 May 2021. The New York Times.

NASA. Ingenuity. WATCH the flight in 3-D.

NASA. “Where is Perseverance?” Track the Rover.

NASA. “NASA confirms evidence that liquid water flows on today’s Mars.” 28 September 2015. Release 15-195.

Tianwen-1. VIDEO of Mars landing:

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp


Skip to toolbar