ENERGY/WATER: Summer – Full Steam Ahead

Steam is needed to brew beer. Image” “THAT is what I like,” by photographer Alan Levine, 2012. Creative Commons 2.0. Included with appreciation.

Today is the solstice. It’s summer – in some parts of the world – perfect weather for enjoying a cold drink on a hot day. Chances are that beverage, and its glass, were brought to you by steam. Brewing craft beer, sterilizing dental or medical instruments, cooking, heating – all these activities require steam. Fossil fuels power 73% of energy in the United States: 40% is used to make steam. Usually produced by boilers, powered by coal, gas, or oil, the industry standard could soon change.

Beer brewing may be the same, but steam is changing. Image: “Beer at the bottom of a glass” by photographer Specious, 2009. Creative Commons. Included with appreciation.

Transitioning to a new energy source often requires installing new, expensive infrastructure – think electric vehicles and charging stations. But if the same infrastructure could be used, phasing out and phasing in could be seamless. That is the case with emerging technology of green steam, A similar advantage can be found in biofuels for aviation: sustainable aviation fuels can be pumped into jet aircraft now using fossil-based kerosene. Saving costs of building new infrastructure, saving costs of removing old systems, saving jobs by keeping the same personnel, and saving energy – it is a win worth getting steamed up about.

Aeolipile – from Knight’s American Mechanical Dictionary, 1876. Image: Public Domain.

The first steam engine, called the aeolipile was described by Vitruvius who also wrote about the Roman Aqueducts. In 1712, Thomas Newcomen, said by some to be the progenitor of the Industrial Revolution, invented an atmospheric engine powered by steam – it pumped water out of coal mines, thus advancing the use of coal for energy. Since Newcomen, steam has been made by burning coal, or other fossil carbon-based fuels.

How coal powers steam. Image: “Coal-fired power plant diagram,” by Tennessee Valley Authority (TVA), 2013. Public Domain.

Enter Spirax Sarco. The UK-based powerhouse is testing a zero-carbon boiler for a food manufacturer. The food and beverage industry produces 11% of the world’s greenhouse gases – same as the total emissions for Belgium. The food and beverage industry contributes $412 billion to the U.S. economy. In the EU, the industry employs 4 million people. Developing zero carbon steam technologies for this industry will help to meet global climate goals.

Steam is a natural phenomenon. Image: “Grand Prismatic Spring with steam rising from Excelsior Geyser.” by Frank Kovalcheck, 2008. Creative Commons 2.0. Included with appreciation.

Steam didn’t need to be invented. It has been a product of the Earth longer than humans have been on the planet. Visit Iceland and you’ll see steam rising from the geysers. Steam uses water: in a drought-threatened world, more efficient steam can save water and reuse this critical resource. Beer brewing is one example of using water and steam, with a few other ingredients. The beverage is so traditional it is made by the monks of the Abbey of Our Lady of Saint-Remy, Belgium, a Cistercian Order of Strict Observance. You can’t enter the monastery, but you can toast with their beer, made by traditional processes.

“Brewery in the Abbey of Our Lady of Saint-Remy, Belgium, of the Cistercian Order of Strict Observance.” By photographer, Luca Galuzzi. Creative Commons 2.5. Included with appreciaiton.

Enter AtmosZero. The US-based start-up company that just received Series A funding by Engine Ventures along with backing by Constellation Energy Corporation, Energy Impact Partners, Starlight Ventures, and AENU, is developing a boiler driven by heat pump technology. The U.S. Department of Energy awarded AtmosZero a $3 million grant for Industrial Efficiency and Decarbonization. The innovative Boiler 2.0 is a “drop-in” system that can replace carbon fossil-fueled equipment. The system generates two times more heat than its energy input. An early adopter and beta-tester: New Belgium Brewing, a craft beer company in Colorado. Cheers!

Can green steam decarbonize the beverage industry? Image: “Absinthe Robetter” by Privat-Livemont, 1896. U.S. Library of Congress. Public Domain.

More:

AENU. https://www.aenu.com

AtmosZero. https://atmoszero.energy

Brooke, K. Lusk. “TRANSPORT: New ‘Wingprint’ for Aviation.” 29 November 2023. Building the World Blog. https://blogs.umb.edu/buildingtheworld/2023/11/29/transport-new-wingprint-for-aviation/

Constellation Energy Corporation. https://www.constellationenergy.com

Energy Impact Partners. https://www.energyimpactpartners.com

Engine Ventures. https://engineventures.com

National Museums Scotland. “Thomas Newcomen’s Steam Engine.” https://www.nms.ac.uk/explore-our-collections/stories/science-and-technology/newcomen-engine/

New Belgium Brewing. https://www.newbelgium.com

SpiraxSarco. https:spiraxsarco.com

Starlight Ventures. https://starlight.vc

Vitruvius. De Architectura. https://penelope.uchicago.edu/Thayer/E/Ronan/Texts/Vitruvius/home,html

Winrow, Michael. “Why green steam is a hot issue for business.” 25 April 2024. BBC.com. https//www.bbc.com/news/business-68687140

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 U

 

 

 

 

 

 

 

 

Print Friendly, PDF & Email

WATER: Peace and Water

World Water Day 2024: Water and Peace. Image: “Peace Dove and Olive Branch at Flight.” by Nevit. Creative Commons 3.0. Included with appreciation.

WATER: It is our natural shared element. Earth is 70% water. Our bodies are 68% water; plants as much as 90%. Water is one of our most important shared resources. Can what is shared be a passage to peace?

Civilization has advanced by sharing water. Image: “Xvolks Canal des Deux Mers (or Canal du Midi)” by Xvolks, 2005. Creative Commons 3.0. Included with appreciation.

Throughout history, civilization advanced by sharing water. China’s Grand Canal carried water, and food, from the south to the northern capital. Italy’s Aqueducts brought fresh spring water from surrounding hills to the city of Rome. France joined the Atlantic to the Mediterranean via the Canal des Deux Mers. The Colorado River, water source for 40 million people, shares water with the United States, many original American tribal nations, and Mexico, while providing hydroelectric power. The Tennessee Valley Authority harnessed water to provide electricity with its guiding motto: “Power for All.” Snowy Mountains Hydroelectric is now building Snowy 2.0 that will re-use and recirculate water for pumped hydro energy. The Suez Canal has, in its founding firman, assurance that the waterway must be open to all nations in times of war and peace.

March 22, 2024 World Water Day: Water and Peace. Image: “Peace” by photographer Lindsay Ensing, 2011. Creative Commons 2.0. Included with appreciation.

This year, the United Nations, convener of World Water Day adopted in 1992, offers the theme of Water and Peace. How fortunate we are that water is a renewable resource, if its wise use is designed to follow its natural system dynamics. In our time of climate change, when drought may cause water scarcity, respecting and honoring ways to sustain, renew, and share water may inspire peace. How will you honor water and peace?

How will you help the world honor water and peace? Image: “The World of Water” by photographer Snap. Creative Commons 2.0. Included with appreciation,

Brooke, K. Lusk. Renewing the World: Casebook for LEADERSHIP in WATER. 2024. Amazon and  https://renewingtheworld.com

Snowy Hydro 2.0. https://www.snowyhydro.com.au/snowy-20/

United Nations. “Water and Peace.” https://www.unwater.org/water-facts/water-and-peace

United Nations. “Water for cooperation: transboundary and international water cooperation, cross-sectoral cooperation, including scientific cooperation, and water across the 2030 Agenda for Sustainable Development” 22-24 March 2024. hrrps://documents.un.org/doc/undoc/gen/n23/029/39/pdf/n2302939.pdf?token=W6ZMHooSJ2lgATSDBA&fe=true

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 U

Print Friendly, PDF & Email

WATER: Taking “forever” out of PFAS

 

Water is the fountain of life. Let’s remove PFAS forever chemicals from drinking water. Image: “Een oranje vontijn” by graphic artist Japiot, 2011. Dedicated by the artist to the universal public domain, CCO 1.0. Included with appreciation.

Water is the fountain of life: our bodies are over 60% water, and some plants are as much as 90% water. We can live three weeks without food, but only three days without water. But while our body and natural needs have not changed, water has. Industrial chemicals have washed down our drains and into our drinking water supply. These include microplastics found in household cleaning products (think “scrubbers”) and even cosmetics (think “smoothers and fillers”).

PFAS chemicals are endangering our water supply. Image: “Perfluorooctanessulfonic acid, PFAS” by graphic artist Jynto, 2011. Dedicated by the artist to the public domain, CCO 1.0. Included with appreciation.

But among the most troubling additions to our water supply are PFAS (per – and polyfluoroalkyl) compounds called “forever chemicals.”  They are ubiquitous. Have a teflon pan for cooking? You could be adding PFAS to your omelette. Grabbing take-out pizza for the family? If your pie comes in a grease-proof pizza box, that container may have PFAS substances. Serving trout for dinner? Fish from waterways that harbor PFAS may contain the chemicals. It’s a global problem. American companies DuPont and 3M may have started it, but now PFAS chemicals are present in water worldwide. Clean drinking water is one of the first quests of human history, with early achievements like the Roman aqueducts or the New River of England. But Italy now faces PFAS problems, and England’s Environment Agency reported in 2021 that PFAS is widely present in English surface water and groundwater in concentrations of disturbing magnitude. In fact, a recent UK directive goal of achieving good quality of all waterways by 2027 could now need to be revised to 2063, due to the problem of PFAS.

Many PFAS chemicals are dangerous to human health. Image: “Effects of exposure to PFASs on human health” by European Environment Agency, with image vectorization by Mrmw, 2019. Creative commons 2.5. Included with appreciation.

There are more than 8,000 different forever chemicals, many troublingly toxic and stubbornly persistent. PFAS can be damaging to human systems, resulting in hormonal problems and perhaps causing diseases such as cancer. The chemicals are especially dangerous for those who are pregnant. A legal settlement with 3M on PFAS, amounting to $10.3 billion over 13 years and the pledge to exit all PFAS manufacturing in 2025, may pave the way for more action by industry to stop the use of forever chemicals. 3M had some explaining to do to its investors. The settlement was revised and then renegotiated to $12.5 billion, spreading payments out until 2036. But you can take preventative measures now.

I. NOW: Here are two steps you may wish to take now regarding PFAS.

Test your drinking water for PFAS. Image: “Drinking water sign” by Dr. Torsten Henning, 2009 with derivative graphics by Shizhao. Creative commons 3.0. Included with appreciation.

#1 Detection. If you obtain your household drinking water from a municipal source, your local water utility should have relevant data. If not, you can test your household water yourself, using a certified lab with approved testing methods. Need help finding a lab? Here’s a start. Or, if you love dipping your pole in the local lake or river for a day of fishing, in the U.S., you can contact State and Tribal experts for information on your  local water source’s PFAS measurements.

Filter your water. Image: “Biosand Water Filter” by graphic designer TripleQuest, 2010. Creative commons 3.0. Included with appreciation.

#2 Filtration. 

Some households may benefit from using water filtration systems but there are so many kinds of PFAS chemicals with so many different compounds that one-filter-for-all is proving difficult. Sandia National Laboratories is working on an advanced filtration system that will collect many kinds of PFAS substances. However, once you have filtered out the PFAS, be aware that the waste material will be concentrated and highly toxic. Municipalities and cities may need to find a way for households (and organizations including hospitals and schools) to send their filled filters to a safe disposal center. For now, installing an activated carbon filter, made from organic materials with high carbon properties like wood, lignite and even coal, sometimes made with granular activated carbon (GAC), can help. GAC filters work well on longer-chain PFAS (like PFOA and PFOS) but shorter-chain formats like (PFBS and PFBA) may slip through. Resins are an option. In this category, AER filters can remove 100% of PFAS, but the need to change filters often is still a problem. Finally, high-pressure membranes, like nano-filtration or reverse osmosis, can remove PFAS. Nano-filtration membranes remove particles but retain minerals; reverse osmosis removes minerals as well. Membrane filters can remove 90% of PFAS, including the elusive short-chain kinds.

II. SOON: Emerging Innovations and Solutions for PFAS

Destruction

Teflon may contain a particularly durable type of PFAS that can withstand high heat. Image: “Teflon Plan” by photographer MdeVicente, 2014. Dedicated to the public domain by the photographer. Creative commons 1.0. Included with appreciation.

That teflon pan in your kitchen hints at a problem in achieving permanent destruction of PFAS. Teflon is a kind of PFAS called PTFE, and it is specially formulated to remain intact in temperatures as hot as 500 Fahrenheit (260 Celsius). Moreover, when we burn PFAS in its longer-chain form, it merely transforms into short-chain PFAS that floats into the air, and then drifts down into groundwater and eventually pours right back out of your tap water. To combat that indestructibility, a laboratory at the University of British Columbia and a team at the University of California, Riverside, are working on methods using electrochemical and photochemical techniques. Initial results are promising: using low wavelengths of ultraviolet light, scientists are achieving PFAS breakdown. Professor Haizhou Liu, study author, commented that the by-product of this method of destroying PFAS is actually something beneficial – fluoride, the same chemical commonly added to toothpaste that can help strengthen teeth. The system is now entering a larger scale phase with the goal of designing a UV reactor that can process millions of gallons (or liters) per day and can be attached to municipal water treatment plants.

Image: “Acidimicrobium ferrooxidans.” by Manfred Rohde, Helmholtz Centre for Infection Research, Braunschweig, 2009. Creative commons 3.0. Included with appreciation.

Another approach? Microbes. Princeton University found that Acidimicrobium bacterium A6 proved effective at removing 60% o PFOS and PFOA in the lab. A subsequent study at the University of California headed by Professor Yujie Men is exploring bacteria and enzymes that can speed up the “forever” into faster dissolution.

Cessation

“Disappearing” by photographer Dirk Duckhorn, 2013. Creative commons 2.0. Included with appreciation.  Developing a timeline to achieve cessation of harmful PFAS chemical is now underway; eventually, most forever chemicals will disappear. Stopping manufacture and sales of fossil-fuel powered vehicles is a goal with dates. Achieving net-zero carbon emissions is a target with increasingly-agreed timelines. Limiting methane emissions is now a global pledge. With the 3M legal settlement, we are now seeing a proliferation of legal actions regarding forever PFAS chemicals. The very first lawsuit regarding damages from use of PFAS, then aimed at DuPont’s use of PFAS in manufacturing Teflon, (Tennant v. DuPont) was in 1999; it was settled in 2001. Right now, in 2023, thee are 25,000 claims against DuPont and 3M as well as Chemours and Corteva. In the 1990’s, so-called “Big Tobacco” lawsuits amounted to $200 billion. PFAS is on the way to meet or beat that tally. Eventually, we will phase out PFAS. But until then, you can find ways to protect yourself and your family by avoiding products containing PFAS, filtering your home water supply, supporting political and civic initiatives to keep drinking water safe and sustainable. All these approaches will help to achieve United Nations Sustainable Development Goal #6, and will keep you and your family, schools, hospitals, and business organizations, healthier.
United Nations Sustainable Development Goal #6. Image: “SDG 6” by UN. Public Domain. Included with appreciation.

3M. “3M resolves claims by public water suppliers, supports drinking water solutions for vast majority of Americans.” 23 June 2023. https://investors.3m.com/news-events/press-releases/detail/1784/3m-resolves-claims-by-public-water-suppliers-supports

Environmental Protection Agency (EPA). “PFAS explained.” https://www.epa.gov/pfas/pfas-explained

Environmental Protection Agency (EPA). “The Drinking Water Treatability Database (TDB).” https://tdb.epa.gov/ted/about

Rizzo, Pat. “3M’s revised PFAS settlement includes atypical liability terms.” 6 September 2023. Bloomberg Law. https://news.bloomberglaw.com/environment-and-energy/3ms-revised-pfas-settlement-includes-atypical-liability-terms

Tennant, et al v. DuPont, et al., 11 June 1999. https://www.govinfo.gov/app/details/USCOURTS-ohsd-2_13-cv-00334

TNI Lams, National Environmental Laboratory Accreditation Management System, a central repository of accredited testing laboratories for PFAS. https://lams.nelac-institute.org/

Turns, Anna. “Can we take the ‘forever’ out of forever chemicals?” 18 October 2023. Future Planet/BBC. https://www.bbc.com/future/article/20231016-cleaning-up-pfas-forever-chemicals

United Kingdom (UK). “Poly- and perfluoroalkyl substances (PFAS): sources, pathways, and environmental data: summary.” 26 August 2021. https://www.gov.uk/government/publications/poly-and-perfluoroklyl-substances-pfas-sources-pathways-and-environmental-data/poly-and-perfluoroalkyl-substances-pfas-sources-pathways-and-environmental-data-summary

United States District Court for the District of South Carolina. “Aqueous film-forming foams products liability litigation.” Master Docket Number 1:18-mn-2873-RMG, Civil Action Number 2:23-v-03147-RMG, August 28, 2023.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 U

 

 

Print Friendly, PDF & Email

WATER: Saltwater Intrusion – Rolling into the River

Saltwater is rolling in on the Mississippi River. Image: “The waves on the water” by graphic artist Elapros, 2011. Creative commons 4.0. Included with appreciation.

Tina Turner famously sang about Proud Mary Rollin’ on the River. But now the mighty Mississippi River is not rolling with cruise boats. A Viking line riverboat recently set sail but was stuck for an entire day on a sandbar. The Mississippi river is suffering from drought, reducing the river’s freshwater flow and allowing salty water from the Gulf of Mexico to enter the river. Affected are plants, wildlife, and people – including those in the city of New Orleans, Louisiana.

“Skyline of New Orleans, Louisiana, USA” by Michael Maples, U.S. Army Corps of Engineers, 1999. Public Domain. Included with appreciation.

With the drought depleting the Mississippi’s freshwater resources, a saltwater wedge is forming that may reach the urban area by the end of October 2023. Why a wedge? The shape is formed by differences in saltwater (more dense) and freshwater: when the two kinds of water come together, they form a wedge.

 

Salter intrusion can affect the environment. Another concern is the water infrastructure. Image: “Saltwater intrusion” graphic by Sweetian, 2011. Creative commons 3.0. Included with appreciation.

As coastal and river communities consume more water, drawing from available aquifers, seawater can encroach. That affects both farming (5% salinity makes water unsuitable for agriculture) and drinking water (2% salinity renders freshwater undrinkable). Rivers are also an important habitat for flora and fauna, estuarial environments, and wildlife: all of these are affected by salinity.

Salt can corrode. When drinking water distribution systems contain lead in the pipes, results can be disastrous. Image: “Rusted water pipe” by photographer Geographer, 2008. Creative commons 3.0. Included with appreciation.

While salty water is dangerous for a number of environmental reasons, another serious concern is its corrosive effect. Some of pipes in New Orleans’ water distribution system may still have lead. This is the case for many American cities whose pipes are older than 1986, when a law was passed that prohibits using lead in water systems. One million people in southeast Louisiana are on watch and in danger. Flint, Michigan suffered a tragedy when lead from its aging system leached into drinking water: by the time pediatrician Dr. Mona Hanna-Attisha noticed lead poisoning among patients, a generation of children were stricken. Medical treatment was $100 million; fixing and replacing the outdated pipes: $1.5 billion. Even where lead is not present, other dangerous heavy metals can be released. Anti-corrosion products are available, and the New Orleans has called a public works meeting to plan a corrosion monitoring program.

One option? Bottled water. Image: “Lots of bottled water” by photographer Nrbelex, 2006. Creative commons 2.0. Included with appreciation.

New Orleans, and the communities in southeast Louisiana, can take action now, before it is too late. But what are the options? Like the people in Flint, families can purchase bottled water. A suburb of Nola, Metaire (whose interchange of I-10/I-610 is subject to flooding) reported sales of 2,000 bottles of water daily. In New Orleans, large institutions needing water, like hospitals, were stockpiling in advance. Maybe it could be a short-term option, but it’s an environmental and health risk – over one million plastic bottles of water are sold globally – every minute! Studies reveal water from plastic bottles leaches microplastics into the human system. And then there’s the reality that very few plastic water bottles are recycled, with most ending up in landfills, river, and oceans.  Bottled water is not a long-term answer.

The U.S. Army Corps of Engineers built a sill and can improve that structure. Image: “Sill” by graphic artist Meninanatureza, 2021. Creative commons 4.0. Included with appreciation.

What about macro solution? In July 2023, the U.S. Army Corps of Engineers placed a “sill”  in the Mississippi River as a kind of barrier to influx of salt water from the Gulf. Now, plans are in process to raise the sill barrier by 25 feet (7.62 meters). But even at the new height, the project will only delay the inevitable by 10 or so days. Another large-scale option is building a pipe to bring fresh water from upstream. It’s like what China did with the Grand Canal – bringing water from the south to the north – but in reverse. Possible, but expensive, and not a guarantee that enough fresh water will be available in the upper river if drought conditions persist.

The MIT desalination device is the size of a suitcase. Image: “Belber Vintage Striped Suitcase,” by photographer Sandrine Z, 2014. Creative Commons 4.0. Included with appreciation.

One further option, especially if saltwater continues to flow from the Gulf of Mexico, is new desalination technology developing at MIT. The Device Research Laboratory’s Lenan Zhang and Yang Zhong, along with Evelyn Wang and team, working with Shanghai Jiao Tong University and the National Science Foundation of China, announced development of a system the size of a suitcase that can filter high-salinity water, delivering 1.32 gallons (5 liters) of drinking and cooking water per hour. It can be installed at households, and is free from electricity, running on solar power. The system is new design that solves the formerly-intractable problem of salt buildup that clogs many desalination devices. Overall, the cost of delivering drinking water is cheaper than tap water. In a feat of biomimicry, the device by thermohaline processes – (temperature “thermo” + salinity “haline”) – just like the waves of the ocean. (Chu 2023).

Mangrove leaves can excrete salt. Image: “Avicenna germinans  –  salt excretion” by photographer Ulf Mehlig. Creative commons 2.5. Included with appreciation.

Or where suitable, there is the mangrove. This coastal plant can thrive in salty environments and may even act as a filter; some mangrove leaves are able to excrete salt. Mangrove trees can help to regulate salinity: they thrive in the intertidal zones where salt and fresh water mix. Avicenna officinalis (see above) is one of the salt-secretors; this mangrove tree has evolved salt glands in the tissues that release salt.

There are more than 500 port cities endangered by saltwater intrusions; it is a challenge offering scalable innovation. Image: “Earth-Globespin” by NASA, 2015 Public Domain. Included with appreciation.

Will New Orleans serve as a case example? Other salt water wedges can be found in the estuaries of the rivers including the Columbia River of Oregon and Washington states, or the Hudson in New York. And, saltwater intrusions are not restricted to the United States. The Po River in Italy suffered damage in the Po Plain where salt water from the Adriatic entered the freshwater river: drainage from agricultural land worsened the salinization process.  In Bangladesh, southwestern coastal regions are also threatened by saltwater intrusions causing soil damage and compromising drinking water: cyclones and storm surges exacerbate the threat. Seawater intrusion is now a major problem worldwide: it even has its own acronym (SWI). Alarmingly, 32% of world coastal cities are threatened by saltwater intrusion: 500 cities are in urgent danger.

“Tina Turner,” by photographer Les Zg, 1990. Creative Commons 4.0. Included with appreciation.

As you consider the Mississippi’s present problems and possible solutions, you might like to reflect upon some of the many songs written about the legendary river. For a sample, including songs about the original and first nation people who live there, explore Mississippi River music, click here. Or, listen to Russell Batiste, Jr., to Johnny Cash’s “Big River,” and Ike and Tina Turner’s version of “Proud Mary.”

Antonellini, Marco, et al., “Salt water intrusion in the coastal aquifer of the south Po Plain, Italy. December 2009. Hydrogeology Journal 16(8): 1541-1556. https://www.researchgate.net/publication/226067653_Salt_water_intrusion_in_the_coastal_aquifer_of_the_southern_Po_Plain_Italy

Brewer, Keely “Burgeoning Mississippi riverboat industry grapples with increasing threats.” The Daily Memphian. 10 July 2023. https://www.nola.com/news/environment/flood-drought-threats-for-mississippi-riverboat-industry/article_ab3234a4-1153-11ee-95a8-f7e683994157.html

Brooke, K. Lusk. “Leaking or Lacking?” pages 5 – 14. Renewing the World: Casebook for Leadership in Water. 2023. ISBN: 9798985035933. https://renewingtheworld.com

Chu, Jennifer. “Desalination system could produce freshwater that is cheaper than tap water.” 27 September 2023. MIT News. https://news.mit.edu/2023/desalination-system-could-produce-freshwater-cheaper-0927

Coo, Tianzheng, Dongmei Han, Xianfang Song. “Past, present, and future of global seawater intrusion research: A bibliometric analysis.” 27 August 2021. Journal of Hydrology. Volume 603, Part A, December 2021, 126844. https://www.sciencedirect.com/science/articleabs/pii/S0022169421008945

Fortin, Jacey, and Colbi Edmonds. “Battling a Water Crisis: Bottles, Barges, and Maybe a Quarter Billion-Dollar Pipe.” 29 September 2023. New York Times. https://www.nytimes.com/2023/09/29/us/new-orleans-saltwater-intrusion.html

Klinkenberg, Dean. “Mississippi River Playlist.” Spotify. https://open.spotify.com/playlist/23gl91dNAgksllxBBVSd8s

LaPotin, Alina, et al., “Dual-stage atmospheric water harvesting device for scalable solar-driven water production.” 20 January 2021. Joule. Volume 5, Issue 1, pages 166-182.

New Orleans, City of. “Corrosion Control” Public Works Committee. 27 September 223. VIDEO. https://www.youtube.com/live/DS8X2ijS5LpM?ssi=0P5up0-lemTixu67.

Somssich, Marc. “How a Mangrove Tree Can Help to Improve the Salt Tolerance of Arabidopsis and Rice.” 14 December 2020. Plant Physiology 184(4): 1630-1632. PMID: 33277332. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723112/

Tulane University, School of Public Health. “5 things to know about the saltwater intrusion of the Mississippi River.”  28 September 2023. https://sph.tulane.edu/5-things-know-about-saltwater-intrusion-mississippi-river

United States, National Park Service. “Songs of the Mississippi River.” https://www.nps.gov/miss/learn/education/songs-of-the-mississippi-river.htm

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 U

 

 

 

Appreciation to Jason W. Lusk for sharing research.

Print Friendly, PDF & Email

ENERGY: Peridotite – Philosopher’s Stone for Carbon Removal

Peridotite, found abundantly in Oman, may be the philosopher’s stone of climate change. Image: “Muscat, capital of Oman” by photographer Safa Daneshuar, 2022. Creative commons 4.0. Included with appreciation.

Humans have long dreamed of magical transformations. Jabir ibn Hayyan, 8th century alchemist, and Albertus Magnus, colleague of fellow Dominican Thomas Aquinas, who wrote of the lapis philosophorum or “philosopher’s stone” that turned base metals into gold, are among those who foresaw what may be natural magic that could help to transform climate change, altering carbon dioxide before it can harm the atmosphere. Can we turn CO2 into a new form of gold?

Alembic: Drawing and Description by Jabir ibn Hayyan, 8th century. An alembic is an alchemical still. Image: creative commons, public domain. Included with appreciation.

At Iceland’s Hellisheidi power station, a company called Carbfix captures CO2, pumps it with water, channels it underground into basalt where it soon becomes rock. Basalt contains calcium, magnesium, and iron – elements that bind easily with C02. Basalt is the most common rock type on the planet. In fact, the ancient Romans used a type of volcanic basalt in constructing their legendary roads. More than 90% of all volcanic rock is basalt. It is estimated that the amount of global basalt could store all the CO2 emissions now driving climate change. Carbfix’s motto: “We turn CO2 into Stone.” Sounds promising, but there’s a catch. It takes 25 tons of water to transform one ton of CO2 via basalt. When you realize that human activity emits 35 gigatons (a gigaton is one billion tons) of CO2 per year, that’s a lot of water to drain from an already-thirsty world. Carbfix will have a role to play in carbon removal, and water use may improve through advanced technologies, but basalt is not the only magical stone.

Carbfix uses basalt to turn carbon dioxide into permanent stone. The process requires use of water in significant amounts. Image: “Hellisheidi Geothermal Power Plant, site of Carbfix.” Photograph by Sigrg, 2008. Creative Commons 4.0. Included with appreciation.

Basalt is just one option. Another is peridotite. A new company named 44.01, referencing the molecular mass of carbon dioxide, has discovered a way to use peridotite to fuse carbonated fluid into seams of the rock. Co-founded by Talal Hasan and Karan Khimji, 44.01 is located in Oman where one of the world’s largest deposits of peridotite can be found. Oman’s deposit is close to the surface, offering advantageous access.

One of Carbfix’s founders, Juerg M. Matter, professor at the University of Southampton, and also Columbia University’s Climate School and Lamont-Doherty Earth Observatory, is now a team member of 44.01. Another team member is Peter B. Kelemen of the Department of Earth and Environmental Sciences (DEES) at Columbia University, and of Columbia Climate School, Lamont-Doherty Earth Observatory, guiding 44.01 on chemical and physical processes of reaction between rocks and fluids.

Peridotite can, when combined with water, absorb and permanently remove carbon dioxide. Image: “Classification diagram for peridotite and pyroxenite” adapted from Bodinier and Godard (2004) by Tobias1984, 2013. Creative Commons 3.0. Included with appreciation.

The magic alchemical formula is peridotite (containing olivine and pyroxene) combined with CO2 and water. Peridotite mineralization already occurs in nature: for example, when rainwater lands on peridotite, CO2 is dissolved. But it’s a slow process, taking decades. The team of 44.01 has found a method to accelerate mineralization of CO2, gathered via direct air capture (DAC), in less than one year. In 2022, 44.01 received the Earthshot Prize.

The Earthshot Prize was awarded to 44.01 in the category of “Fix Our Climate.” Image: courtesy of The Royal Foundation, 2021. Public Domain Creative Commons. Included with appreciation.

Carbon dioxide emissions are a difficult problem that the world must solve before climate change, caused by CO2 and other greenhouse gases, becomes irreversible. In 2015, the Paris Agreement of COP21 brought pledges to reduce and halt use of fossil fuels. But even when and if those goals are met, we’ll still have carbon dioxide in the atmosphere, and some sectors of the economy might still use fossil fuels. That’s why carbon sequestration and carbon storage technologies have begun to increase in importance. Storage is, by nature, either temporary or troubled: the CO2 is stored as CO2, not gone, just hidden. A leak would release it back into the atmosphere. Carbon removal through mineralization is better because it is permanent. No insurance, no monitoring, no escape. The CO2 molecule is gone. Alchemy!

Where else can we find rock that can absorb and transform CO2? “Map of World Geologic Provinces,” by USGS. Public Domain. Included with appreciation.

Peridotite is also found in Asia, Australia, Europe, and North and South America. Oman-based research will continue, in part because the peridotite is easily reached due to its surface proximity. Next steps for testing may be in California but peridotite deposits there would still require drilling. Meanwhile, peridot, green gemstone made from peridotite’s olivine component, associated with the month of August, said to reveal magic, could become a jewel that signifies a better climate.

The gemstone Peridot, said to reveal magic, is made from peridotite. Image: “Gem Peridot,” by photographer Michelle Jo, and dedicated to the public domain. Included with appreciation.

Rather than drilling (with its environmental disturbance and potential destruction), carbon removal via mineralization may be explored by using rocks already drilled, in the form of waste tailings from certain kinds of mines. Diamond, nickel, and platinum are mined from rock that has carbon mineralization promise. De Beers, company that coined the phrase “A diamond is forever,” is beginning trials.

Carbon mineralization could be explored with used rocks left over from diamond mining. Image: “Computer reconstruction of the Hope Diamond, earlier form in the French Blue or Diamantbleu” by Francoisfarges. Creative commons 3.0. Included with appreciation.

A diamond is forever, but diamond mine tailings could help carbon dioxide disappear forever. Other options include basalt, and now peridotite. In myths of ancient times, rock turned into gold was the dream. Now, in the time of climate change, turning carbon dioxide into rock may be the alchemical dream we seek and shall find.

44.01. https://4401.earth/how-it-works/

Albertus Magnus. “De mineralibus” in On the Causes of the Properties of the Elements translated by Irven M. Resnick. Milwaukee: Marquette University Press, 2010.

CarbFix. https://www.or.is/carbfix

Earthshot Prize. “Fix Our Climate Winner: 44.01” 2022. https://earthshotprize.org/winners-finalists/44-01/

Fountain, Henry. “How Oman’s Rocks Could Help Save the Planet.” 26 April 2018. The New York Times. https://www.nytimes.com/interactive/2018/04/26/climate/oman-rocks.html

Harvard Business School. “Karan Khimji, Co-Founder of 44.01” https://www.hbs.edu/environment/blogpost/44.01

Hasan, Talal. “Interview with Earthshot Prize Winner.” VIDEO https://www.youtube.com/watch?v-n30_dKvCcLg

International Monetary Fund (IMF), prepared by Jorge Iván Canales Kriljenko. “On the road to carbon neutrality, fishing for energy exchange and carbon absorption” 2022. https://www.elibrary.imf.org/downloadpdf/journals/002/2022/194/article-A002-en.pdf

Kraus, Paul. Essai sur l’histoire des idées scientifiques dans l’Islam/ Mukhtār Rasā’il Jābir b. Hayyān. Paris/Cairo: G.P. Maisonneuve/Maktabat al-Khānjī.

PDIE Group. “Nominating 44.01 for the Earthshot Prize.” https://pdiegroup.com/

Perasso, Valeria. “Turning carbon dioxide into rock – forever.” 18 May 2018. BBC News. www.bbc.com/news/world-43789527/

Planet A Ventures, GmbH. “Permanent Carbon Sequestration: 44.01 – Life Cycle Assessment & Sustainability Potential.” 2022. https://planet-a.com/wp-content/uploads/2022/12/4401-lca-summary-1.pdf

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 U

Print Friendly, PDF & Email

WATER: Be The Change – World Water Day 2023

World Water Day 2023 – Be The Change. Image: “Water drop” by José Manual Suárez, 2008. Creative Commons 2.0. Included with appreciation.

BE THE CHANGE

Today is World Water Day 2023. This year’s theme is “Be The Change You Want To See In The World.” Here’s a list of personal commitments to solve the water and sanitation crisis. Consider actions you will take, along with your best ideas to sustain world water, and send your commitments to the Water Action Agenda at the UN 2023 Water Conference. Your voice will be heard and your ideas included in the United Nations plan for the future of world water.

Yes, I want to be the change. Image: “Yes” wikimedia, creative commons public domain. Included with appreciation.

Choose the actions you will take, then send your commitments and ideas NOW.

UN-Water. “Be The Change.” https://www.unwater.org/bethechange/

UN 2023 Water Conference. https://sdgs.un.org/conferences/water2023

Water Action Agenda. UN Sustainable Development Goals. https://sdgs.un.org/partnerships/action-networks/water

Want to find out more ways to sustain and renew world water? Please visit https://renewingtheworld.com

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

Print Friendly, PDF & Email

WATER: Colorado River and the Future

And it’s only gotten worse since: 2023 is a critical year to determine the future of the Colorado River. Image: “Drought: before and after.” Photo, United States National Park Service. Wikimedia creative commons public domain. Included with appreciation.

Sharing water is one of the oldest bonds of community. Ancient villages centered around the well; urban settlements like Rome were built near rivers; great cities and civilizations began as ports.

“Rome: A view of the river Tiber looking south with the Castel Sant’Angelo and Saint Peter’s Basilica beyond” by Rudolf Wiegmann, 1834. Wikimedia, public domain. Included with appreciation.

But when neighboring communities are seven large states, the water is the Colorado River, and drought conditions are straining resources: sharing is proving difficult. Camille Touton, Commissioner of the US Bureau of Reclamation, official manager of the river, recently ordered Arizona, California, Colorado, Nevada, New Mexico, Utah, and Wyoming to cut 1/3rd of their water usage. Encouraging states to figure it out amicably, Touton warned that if no solution were soon agreed, the federal government would settle the score. The matter is urgent: the Colorado River provides water for drinking and irrigation for 40 million people. Moreover, if Colorado River reservoirs Lake Mead and Lake Powell reach ‘dead pool’ the Hoover Dam will not supply electricity.

Colorado River: Upper and Lower Basin States. Image from USGS data by Shannon1. Creative Commons 4.0. Included with appreciation.

The Law of the River, a 100-year compendium of laws regulating the Colorado River from inception of the Compact in 1922 to 2022 (and now continuing), is both history and future. As farmers claimed more water to grow food to feed a nation, and as cities like Los Angeles and Las Vegas burgeoned in population, dueling needs competed for resources. Add drought and the arguments became more heated.

Las Vegas gets drinking water and electricity from the Colorado River. Image: “Las Vegas by Night, 2019” by Notdjey. Creative commons 2.0. Included with appreciation.

The Colorado River will affect water policy in the United States, Compact partners of Mexico and the original American Sovereign Nations, but around the world. One third of all the rivers and lakes globally are facing drought. Rivers like the Amazon, Indus, Nile, Po, Rhine, and Yangtze, among others, will debate similar decisions.

“Confluence of Indus and Zanskar Rivers” by Bernard Gagnon, 2018. Creative commons 4.0. Included with appreciation.

Rivers support agriculture, drinking water, fish and marine life, barge traffic, and hydroelectricity. How should stakeholders work together to decide who gets water and why?

Interested in how Colorado River decisions will affect other rivers worldwide? Click here.

Henley, Jon. “Europe’s rivers run dry as scientists warn drought could be worst in 500 years.” 13 August 2022. The Guardian. https://www.theguardian.com/environment/2022/aug/13/europes-rivers-run-dry-as-scientists-warn-drought-could-be-worst-in-500-years

Nilsen, Ella. “California floating cutting major Southwest cities off Colorado River water before touching its agriculture supply, sources say.” 1 February 2023, CNN. https://www.cnn.com/2023/01/31/us/california-water-proposal-colorado-river-climate

United States Bureau of Reclamation. “Colorado River Basin.” https://www.usbr.gov/ColoradoRiverBasin

United States Bureau of Reclamation. “The Law of the River.” https://www.usbr.gov/lc/regiona/g1000/lawofrvr.html

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

Print Friendly, PDF & Email

WATER: Armies, Veterans, and Peace

Veterans Day, a Call to Peace. “Veterans Day Poster, 1987.” Wikimedia. Included with appreciation.

Today is Veterans Day, observed in the United States on November 11 since 1919, and founded to commemorate the 11th hour of the 11th day of the 11th month (in 1918) when an Armistice ended World War I. Soon thereafter, the Paris Peace Conference resulted in the Treaty of Versailles. In 1954, Armistice Day was renamed Veterans Day. While today honors those who serve in readiness for war, the origin of the holiday is peace.

Peacetime Roman Army built roads and aqueducts. Image: “Praetorian Guard, circa 50 CE.” Louvre, France. Photograph by Jérémy-Günther-Heinz Jähnick. Gnu license, wikimedia. Included with appreciation.

What is the role of armies in peace? During times of peace, the Roman Army built roads that connected Italy and beyond, and deployed military squadrons to explore and then build the Roman Aqueducts to bring fresh water to the central city. The Netherlands instituted Dike Armies in 1319 to respond to water emergencies.

“Colorado River, Horseshoe Bend,” by photographer Paul Hermans, 2012. CC3.0, wikimedia. Included with appreciation.

Water emergencies are still with us today, perhaps more than ever. The Colorado River, bringing water and electricity to 1 in 10 Americans, as well as agriculture and industry, is 19% smaller than in 2000; reservoirs Lake Mead and Lake Powell are severely depleted. Hydroelectricity, produced by Hoover Dam’s harnessing of the Colorado River, is threatened by drought. The Mississippi River suffers concerning depletion. The same is true for many rivers around the world.  Rights of Rivers deserve protection. Who will defend them?

“Hurricane Ian making landfall, 28 September 2022,” by National Hurricane Center, U.S. National Weather Service. Public Domain, wikimedia. Included with appreciation.

Water problems are causing drought and also inundation. Recent torrents from Hurricane Ian devastated Florida, caused loss of life and property damage totaling in the billions. Areas hit by increasingly powerful floods and storms need rebuilding. Who will do this? How can we best respond to climate damage, or build protection?

History offers an inspiration to uphold military expertise, service, and tradition. We might save our coasts by a modern day equivalent of the Dike Army. We can follow the productive example of the Roman army in sustaining the Colorado River and other threatened water sources.  Armies, and veterans, might serve in what William James called the “Moral Equivalent of War” – defending Nature and Peace.

“Pace” – Italian for Peace. Can we find inspiration in the Roman Army’s works of peace? Image: “Pace” by Fibonacci, CCC3.0. Wikimedia. Included with appreciation.

James, William. “The Moral Equivalent of War.” Lecture 11, pages  267-296, in Memories and Studies. NY: Longman Green and Company, 1911 and presented at Stanford University in 1910 followed by publication in McClure’s Magazine, pages 463-468, August 1910. LINK to text: http://www.public-library.uk/ebooks/65/5.pdf

Nilsen, Ella. “Feds begin ‘expedited’ process to help save drought-stricken Colorado River.” 28 October 2022. CNN. https://www.cnn.com/2022/10/28/us/colorado-river-lake-mead-powell-drought-plan-climate/index.html

Paris Peace Conference. https://www.diplomatie.gouv.fr/en/the-ministry-and-its-network/the-diplomatic-archives/documents-from-the-diplomatic-archives/article/diplomatic-archives-the-peace-conference-paris-18-01-1919

Rights of Rivers. “Universal Declaration of the Rights of Rivers.” www.RightsOfRivers.org

Rojas, Rick. “As Drought Drops Water Level in the Mississippi, Shipwrecks Surface and Worries Rise.” 3 November 2022. The New York Times. https://www.nytimes.com/2022/11/03/us/mississippi-river-drought.html?smid=nytcore-ios-share&referringSource=articleShare

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

 

Print Friendly, PDF & Email

WATER: Po River Crisis

Po RIver of Italy. Illustration from wikipedia. Public Domain.

How can you grow the bountiful produce so treasured by Italy, and the world, in salty water? The worst drought in 70 years, caused by lack of snow and dearth of rain in Italy’s Po River valley, is choking once-verdant farmland. The Po River is 450 miles (650 kilometers) long, birthed in the Alps and running to the Adriatic Sea. One-third of Italy’s population lives near and depends upon the Po River, savoring the bounty of its farmland. Coursing fresh water from the Po usually overwhelms any drifting waves from the Adriatic, but with the Po’s drought, salty seawater is entering at a rate driving inland as far as 18 miles (30 kilometers). Crops are suffering, and so are cucina povera specialities like manzo all’olio or pisarei e faso.

“Italian cuisine,” by photographer who dedicated this image to the public domain and remains unknown. From wikimedia.

Warming weather and drought have also wreaked havoc elsewhere in Italy. The Marmolada glacier in the Italian Alps collapsed on 4 July 2022, killing seven hikers, including two experienced mountain guides. in an avalanche of melting snow mixed with rocks. Prime Minister Mario Draghi stated the cause of the tragedy was climate change. Temperatures in the area have reduced glaciers by half since warming began. More avalanches are feared.

“View of the Marmolada Glacier” taken by photographer of the Italian army circa 1915-1918. Source: www.esercito.difesa.it. Creative Commons license 2.5. With appreciation to the Italian Army.

Hydroelectricity is also affected by drought. One-fifth of Italy’s energy comes from hydroelectric facilities, mainly located in the mountains. In the first four months of 2022, hydro power fell 40% (compared with 2021) due to drought. A water plant in Piacenza was closed on 21 June due to low water levels of the Po, the river that provides the water for the hydroelectric plant. At a time when Europe is trying to reduce dependence on imported energy, hydro power is essential.

Keeping the lights in Piacenza’s magnificent cultural treasures, homes, and businesses.  Image: “Teatro Piacenza,” by photographer Lorenzo Gaudenzi, 2010. Creative commons license 3.0. With appreciation.

What can be done? For now, a state of emergency declaration will truck water to 125 towns that must ration drinking water. In agricultural areas, drought-tolerant crops may become the new normal. Hydroelectricity may need a rethink and redesign: the Colorado River, Lake Mead, and the Hoover Dam have recently shown hydroelectric threats. Regarding melting glaciers, there is no quick fix. Water systems may be ready for Italian creativity and innovation, like those developed by ancient Romans who built the Aqueducts. Starting in 313 bce, Romans built 11 aqueducts, yielding about 200 gallons (750 liters) per person per day. That is more than the average American has: in 1975, the average was 150 gallons (563 liters) per day; in 2021, it was down to 115 gallons. Ancient Rome had such an abundance of water that the city became known for its fountains; composer Respighi’s Fountains of Rome.

Blackman, Deane R. and A. Trevor Hodge, eds. Frontinus’ Legacy: Essays on Frontinus’ De Aquis Urbis Romae. Ann Arbor: University of Michigan Press, 2001.

Brooke, K. Lusk. Renewing the World: Water. Cambridge: Harvard Book Store, 2022. ISBN: 9798985035919. https://renewingtheworld.com

Evans, Harry B. Water Distribution in Ancient Rome. Ann Arbor: University of Michigan Press, 1994.

Parker, Jessica. “Italians wait for rain where longest river runs dry” BBC 8 July 2022. https://www.bbc.co.uk/news/world-europe-62096162

Patel, Kasha. “”Scenes from Italy’s worst drought in 70 years.” 7 July 2022. The Washington Post. https://www.washingtonpost.com/world/interactive/2022/drought-italy-po-worst-water/

Respighi, Ottorino. Fountains of Rome. Performed by Berlin Philharmonic. https://youtu.be/eGZ9oslaeak

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

Print Friendly, PDF & Email

WATER: Noah’s Ark for Marine Life

“Noah’s Ark,” by Edward Hicks. Philadelphia Museum of Art. Public Domain, USA. Image: wikimedia

Coral reefs cover just 1% of the ocean floor but support 25% of all marine life. According to The Ocean Agency’s founder Richard Vevers, even if we meet the targets of the Paris Agreement, we may lose 90% of our coral reefs by mid-century due to ocean warming and acidification that causing coral reef bleaching. Working with the Centre for Excellence in Environmental Decisions at the University of Queensland, The Ocean Agency and a team of scientists selected 50 coral reefs that are most likely to survive climate change with a little help. The reefs chosen are a sample “large enough to allow protection of reefs in all major regions” (UQ 2017).

“Coral planting and reef restoration,” by Profmauri, 2011. Creative Commons 3.0, wikimedia.

Given this ‘Noah’s Ark’ for coral and marine life, how can this precious resource be preserved? Much like the examples of humans helping Nature as in the National Trails System, Roman Aqueducts or the New River, natural coral reefs may get a boost from engineering innovations. Coral can be grown in a lab, where growth that could take 100 years in the ocean can be accomplished in two years under laboratory conditions. Once the tiny corals are ready for transplanting, they can be placed on reefs that are suffering but still able to recover; it’s a process known as “reskinning.”

“The Silent Evolution” by James deCaires Taylor. Photographer, allenran 917, 2014. Creative Commons 2.0.

Another option: forming new coral reefs using underwater sculptures like those created by James deCaires Taylor for the Australia’s Museum of Underwater Art on Great Barrier Reef, and Mexico’s Mesoamerican Reef, largest in the Western Hemisphere, for the Museo Subacuático de Arte. Some debate whether such sculptures are helping or harming marine life. Similar underwater sculpture gardens created by Angeline Chen and Kyle Block, founders of Global Coralition, are located in Koh Tao, Thailand, and in the Dominican Republic, where art honors the traditional water deities of the Arawak/Taino cultures of the Caribbean.

“Blue Spotted Stingray in Koh Tao, Thailand coral reef,” photographer Jan Derk, 2004. Generously dedicated to the public domain by Jan Derk. Creative Commons. With appreciation to Jan Derk.

Vevers worried that coral is an emergency that is invisible to all but divers and the denizens of the ocean. To make the invisible visible (coincidentally the theme for World Water Day 2022 referencing groundwater), The Ocean Agency reached out to Jeff Orlowski and Larissa Rhodes to collaborate on a Netflix film: “Chasing Coral.” During filming, the most dangerous coral bleaching event in history occurred. The film debuted at Sundance and has helped to make coral’s plight more accessible. Watch the film here.

“Coral reef locations,” by NASA, 2006, from Millennium Coral Reef Landsat Archive. Public Domain. 50 are chosen for “Noah’s Ark” preservation. For information on each reef, visit http://seawifs.gsfc.nasa.gov/landsat.pl

Art may help to raise awareness, and respect, for the world’s coral reefs. In addition to nurturing 25% of marine life, coral provides 1 billion people with food, jobs, and income that generates $375 billion in economic benefits. Coral reels are not visible to most of us, so they may be out of mind. But there is much each of us can do. Recycling plastic that can harm reels and marine life, being cautious about the use of some sunscreens when enjoying the beach, or by supporting ocean sustainability and coral reef regeneration, we have an opportunity to build a modern-day Noah’s Ark for coral.

Beyer, Hawthorne L, et al., “Risk-sensitive planning for conserving coral reefs under rapid climate change.” 27 June 2018. Conservation Letters, Volume 11, Issue 6, e12587. https://doi.org/10.1111/conl.12587

DeCaires, Jason Taylor. “An underwater art museum, teeming with life.” TED talk. December 2015. https://www.ted.com/talks/jason_decaires_taylor_an_underwater_art_museum_teeming_with_life?language-en

Drury, Madeleine. “Are giant underwater sculptures helping or harming marine life?” 07/09/2021. Euronews.com. https://www.euronews.com/green/2021/o7/13/are-giant-underwater-sculptures-helping-or-harming-marine-life

Global Coralition. https://www.globalcoralition.org

Netflix and Exposure Labs: “Chasing Coral,” Film. https://www.youtube.com/watch?v=aGGBGcjdjXA

The Ocean Agency, “50 Reefs.” Video: https://youtu.be/pFfVpO_q4sg

University of Queensland, Global Change Institute. “Which reefs are the most important to save?” 24 February 217. https://www.uq.edu.au/news/article/2017/02/which-reefs-are-most-important-save

Vevers, Richard. “Interview,” https://youtu.be/8hMAgr4p7Sg

Wilson, Amy. “Microfragmentation: a breakthrough for coral reef restoration.” 18 September 2018. Medium.com. https://medium.com/@amykwilson/microfragmentation-a-breakthrough-for-coral-reef-restoration-6a2e86c4e2

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

Print Friendly, PDF & Email