Building the World

June 16, 2022
by buildingtheworld
0 comments

WATER and ENERGY: Beyond a Drought

June 2022: an early heat wave intensifies drought. Image: “Heat Wave in United States June 13-19, 2021,” by NOAA. Public Domain, creative commons. Included with appreciation to NOAA.

Is it climate change, or just a heat wave? Maybe the former is intensifying the latter. This week, 60 million people in the United States are enduring extreme heat. Texas broke a heat record on June 12 as the electrical grid strained with the number of people turning on air conditioners. Families noted unusual new residents as outdoor insects crawled into any available shelter to escape sweltering heat. Wildfires sparked: more than 30 recent conflagrations burned one million American acres.

Drought may impact hydroelectricity. Image: “Hoover Dam and Lake Mead, – 2007” by photographer Waycool27, and dedicated to the public domain by the photographer. Included with appreciation.

Heat waves add to concern about drought, an ongoing challenge. Lake Mead, the nation’s largest water reservoir, recently marked its lowest level on record since 1930. The Colorado River, source of Lake Mead’s water, recently reported historic new water shortages, triggering enforced reductions along the Upper and Lower Basin states. Now 143 feet below the target full level, Lake Mead’s drop is as deep as the Statue of Liberty is high. That water drop threatens the water supply of millions of residents, farmers, industrial operations, and others. At 36% capacity, if the water in Lake Mead continues to fall (it has been losing more than 1,000 Olympic-sized swimming pools – every day – for the last 22 years), the hydropower capability of the Hoover Dam (which formed Lake Mead) will also be threatened. Engineers and scientists are watching: if Lake Mead drops another 175 feet, the Hoover Dam will reach “dead pool” (895 feet) and the great dam will fall silent. Because 90% of Las Vegas water comes from Lake Mead, that city will not only have less electricity but very little water. (Ramirez et al., 2021)

“Tennessee Valley Authority” Image 2977 by TVA, 2018. This image is the public domain and included with appreciation.

It’s not just Lake Mead and the Hoover Dam that are of concern due to heat and drought. The Tennessee Valley Authority, one of the nation’s first hydroelectric major achievements, warned customers both residential and commercial to turn off the lights. Nashville Electric Service asked people to turn down air conditioning. Itaipú, harnessing the Paraná River, has similarly found drought threatening its hydroelectric capability.

“Talbingo Dam of Snowy Mountains Hydroelectric.” There are 16 dams in the system. Photograph by AYArktos, dedicated to the public domain, creative commons. Included with appreciation.

Hydroelectricity, as the term indicates, is dependent upon water. Australia recently announced Snowy Hydro 2.0, in an effort to double electrical output of Snowy Mountains Hydroelectric. But the snowy part is problematic now that climate change is threatening snowmelt. Further concern is that 35% percent of the “Australian Alps” have seen wetland loss. Now, snow cover may reduce by 20% to as much as 60%.

What happens if water becomes non-renewable? Image: “Dry riverbed in California,” by NOAA, 2009. Included with appreciation.

Drought has serious consequences for agriculture, habitation, and now hydroelectricity. Hydroelectric power is one of the earliest and most widely applied methods of generating electricity from renewable sources. What happens if or when water becomes non-renewable?

Daley, Beth et al., “Snowy hydro scheme will be left high and dry unless we look after the mountains.” 22 March 2017. The Conversation. https://theconversation.com/snowy-hydro-scheme-will-be-left-high-and-dry-unless-we-look-after-the-mountains-74830

David, Molly. “Nashville Electric Service asks customers to help lessen energy use during high temperatures.” The Tennessean. 13 June 2022. https://www.tennessean.com/story/news/local/2022/06/13/heat-wave-tennessee-2022-nashville-electric-service-customers-conserve-power/7613867001/

Ramirez, Rachel, Pedram Javaheri, Drew Kann. “The shocking numbers behind the Lake Mead drought crisis.” 17 June 2021. CNN. https://www.cnn.com/specials/world/cnn-climate

Spang, Edward, William Moomaw, Kelly Gallagher, Paul Kirshen, David H. Marks. “The water consumption of energy production: An international comparison.” 2014. Environmental Research Letters. 9. 105002. 10.1088/1748-9326/9/10/105002 and https://www.researchgate.net/publication/266620784_The_water_consumption_of_energy_production_An_international_comparison

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

Print Friendly, PDF & Email

June 9, 2022
by buildingtheworld
0 comments

ENERGY: Taxing the air (from cows and sheep)

Can taxing cows help fulfill the Global Methane Pledge? Image: “Two Cows” by photographer Kaptain, 2005. Creative Commons wikimedia CC1.0. Dedicated to the public domain by the photographer; included with appreciation.

Carbon taxing is widely discussed, but New Zealand may be the first to tax a source of methane emissions usually excluded from discussions around bank and government conference rooms. The new source of carbon taxes? Cows and sheep.

Glasgow, Scotland, site of COP26 and the Global Methane Pledge. Image: “University of Glasgow,” U.S. Library of Congress, circa 1890-1900. Wikimedia Public Domain. Included with appreciation.

Since the Global Methane Pledge of COP 26 in Glasgow, Scotland, countries have promised to reduce methane by 30% by  2030, with 100 nations participating.  Methane is the second-most prolific greenhouse gas, and while it has a shorter life than carbon dioxide, methane is far more potent and dangerous. Over a 20 year period, methane is over 80 times more potent than carbon dioxide. So, stopping methane emissions is both a short-term step and a big win.

Fracking causes methane emissions. Image: U.S. Energy Information Administration, 2013. Wikimedia Pubic Domain, included with appreciation.

Over 40% of methane (CH4) comes from natural sources like land, especially wetlands, but the rest is human-driven. Natural gas, especially that obtained by hydraulic fracturing or fracking, accounts for a major part of methane emissions: the United States leads in this sad statistic. Fracked shale wells may leak over 7% of the methane in the atmosphere.

New Zealand has 26,000,000 sheep, a major source of methane. Image: “Baby Lamb,” by photographer Petr Kratochvil, 2014. Dedicated to the public domain by the photographer and included with appreciation.

But methane is also emitted when sheep and cows burp. And New Zealand has plenty of both. While there are only five million people in New Zealand, there are 26 million sheep and 10 million cows. Half of New Zealand’s methane emissions come from animal sources. Under the taxation proposal, starting in 2025, farmers will pay a carbon tax on their animal belches. Monies derived will be directed to agricultural research and approaches to dietary change. Reducing beef and lamb consumption will help lessen methane emissions, and conserve land now used for grazing. For cattle and sheep that remain, nutritional approaches like including lemongrass or seaweed in animal feed may also mitigate methane release. Australia is feeding cows a form of pink seaweed “Asparagopsis” that reduces the carbon in burps (and flatulence) by 99%. That’s significant because one dairy cow can emit enough methane to fill 500 liter bottles – per day.

“Sheep on the Move in New Zealand,” by photographer Bernard Spragg. Dedicated to the public domain. Creative Commons 1.0. Included with appreciation.

New Zealand would be the first country to place a price, and a tax, on agricultural emissions. Will this financial innovation help to balance the food-water-energy nexus?

CCBC. “Climate change: how cow burps and pink seaweed can affect the planet.” 17 August 2019. https://www.bbc.co.uk/newsround/49368462

Friedlander, Blaine. “Study: Fracking prompts global spike in atmospheric methane.” 14 August 2019. Cornell Chronicle. Cornell University. https:/news.cornell.edu/stories/2019/08/study-fracking-prompts-global-spike-atmosphereic-methane

Global Methane Pledge. https://www.globalmethanepledge.org/

Hoskins, Peter. “Climate change: New Zealand’s plan to tax cow and sheep burps.” 9 June 2022. BBC News. https://www.bbc.co.uk/news/business-61741352

Plewis, Ian. “Taking action on hot air: Why agriculture is the key to reducing UK methane emissions.” 24 May 2022. University of Manchester, UK. https://blog.policy.manchester.ac.uk/sci-tech/2022/05/taking-action-on-hot-air-why-agriculture-is-the-key-to-reducing-uk-methane-emissions/

Spang, Edware et al., “Food-Energy-Water-(FEW) Nexus: Informal Water Systems.” https://spang.ucdavis.edu/food-energy-water-few-nexus

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

Print Friendly, PDF & Email

June 2, 2022
by buildingtheworld
0 comments

ENERGY: Aloha

 

“Waikiki Beach, Diamond Head, Oahu,” by D. Howard Hitchcock, Hawaii 1928. Image: wikimedia in the public domain. Included with appreciation to D. Howard Hitchcock.

Aloha means both hello and goodbye. It’s a fitting word for transitions. Here are two case examples of solar policy changes in Hawaii and in Australia.

Hawaii is a perfect location for renewable energy: sunshine and wind are abundant. Yet, even with its natural advantages of sun and wind, Hawaii has been slow to move away from fossil fuels. But when electricity rates increased by 34% (from April 2021 to April 2022), homeowners who pay those hiked rates began to install solar. Now, more than one-third of all residential buildings in Hawaii have solar roofs. Could Hawaii serve as a case example of the challenges, and paths, to transitioning from fossil to renewable energy?

“Hawaii solar: a photovoltaic power station.” by photographer Reegan Moen, U.S. Department of Energy, 2017. Wikimedia public domain. Included with appreciation to Reegan Moen and U.S. Department of Energy.

Policy matters. Just a few years ago, Hawaiian Electric, the largest power provider in the island state, lobbied to reduce rebates for rooftop solar. In 2015, utilities slashed revenues for excess energy sent to the grid by homeowners. But Hawaii has changed policies now, offering incentives up to $4,000 for Oahu residents to install home batteries for solar systems: the utilities now siphon excess power between 6pm – 8:30 pm, when demand peaks. Policy has encouraged solar adoption: legislating a Performance Based Regulation (PBR) for Hawaiian Electric now makes renewable sources easier to adopt and link, further aiding homeowners in their rooftop systems. Kauai has made the most progress: 70% of the island’s electricity is carbon-free and expected to increase to 90% with more solar and a hydroelectric plant that both creates and stores energy.

How will geopolitics hasten the clean energy transition? “Top Oil Producing Countries,” by U.S. Department of Energy, 2022. Image: wikimedia, public domain. Included with appreciation.

Geopolitics recently hastened the transition. In 2021, oil-supplied power plants delivered two-thirds of Hawaii’s electricity. Most of that oil (80%) was imported from Russia (as well as Argentina and Libya), while 20% was obtained from Alaska. Further, Hawaii is about to close its major coal plant. Forces of war and threats to supply have turned Hawaii in the direction of the sun. There is still debate over what kind of solar is best: utilities prefer large-scale options; but macro-scale means large tracts of land, something Hawaii does not have in abundance. Hawaii has set a new goal to achieve 100% renewable energy sources: it is the first American state to do so. Recently, other states have set the same goal. Cities are making solar decisions ahead of states. Hawaii’s Honolulu has three solar panels per person; California’s Los Angeles ranked number one of 57 cities surveyed for total installed solar capacity in 2019, while Nevada’s Las Vegas is close behind. In 2019, more solar capacity was added to the U.S. grid than any other energy source.

“The Famous Bondi Beach, Australia,” by photographer Alex Proimos, 2012. Image: creative commons 2.0. Included with appreciation to Alex Proimos.

Another place in the sun? Bondi Beach, Australia, home of  Snowy Mountains Hydroelectric.  Australia drew 76% of its total energy from fossil fuels in 2020 with a mix of coal (54%), gas (20%), and oil (2%). Australia plans to close its largest coal plant in 2025 (seven years earlier than scheduled) and is now picking up the pace in solar. Australia increased rooftop solar installations by 28% from 2019 to 2020 – one in four homes there have solar panels: incentives and grants, contributed to the change. By 2020, renewable energy reached 24% of Australia’s power array. How much did the Renewable Energy (Electricity) Act of 2000 accelerate the change? Will the 2022 election of a new Australian government advance climate action?

“Sunlight on the face of Earth,” by NASA Earth Polychromatic Imaging Camera (EPIC) that tracks sunlight , from Deep Space Climate Observatory (DSCOVR)” by NASA 2017. Image: wikimedia public domain. With appreciation to NASA.

Hawaii and Australia may serve as examples of how natural resources like sun and wind interact with policy and geopolitics in a dynamic system influencing factors driving the transition from fossil fuels to renewable energy. What kinds of laws and policies are needed to encourage change?

Australia, Federal Register of Legislation. “Renewable Energy (Electricity) Act 2000.” C2019C00061. https://www.legislation.gov.au/Details/C2019C00061/Html/Text

Australian Government of Industry, Science, Energy, and Resources. “Australian electricity generation – fuel mix.” 2020. https://www.legislation.gov.au/Details/C2019C00061/Html/Text

Environment America Research and Policy Center, and Frontier Group. “Shining Cities 2020: The Top U.S. Cities for Solar Energy.” 2020. https://environmentamerica.org/feature/ame/shining-cities-2020

Harlow, Casey. “Honolulu tops national list for solar energy generation.” 19 April 2022. Hawaii Public Radio. https://www.hawaiippublicradio.org/local-news/2022-04-19/honolulu-tops-national-list-for-solar-energy-generation

Hawaii Public Utilities Commission (PUC). “Performance Based Regulation (PBR).” Decision and Order No 37787, 17 May 2021. https://puc.hawaii.gov/energy/pbr/

Paul, Sonali. “Australia’s biggest coal-fired power plant to shut in 2025.” 16 February 2022. Reuters. https://www.reuters.com/business/energy/origin-shut-australias-biggest-coal-fired-power-plant-225-2022-02-16/

Penn, Ivan. “Hit Hard by High Energy Costs, Hawaii Looks to the Sun.” 30 May 2022. The New York Times.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

Print Friendly, PDF & Email

May 18, 2022
by buildingtheworld
0 comments

WATER: Mapping YOUR Climate Risk

What is your climate risk? Animation created by SaVi software from Geometry Center, University of Minnesota by Grand DixenceWikipedia for view of Iridium coverage. Image animation edicated to the public domain (CC1.0) by its creator, and included here with appreciation.

Climate change brings risk. For some, it is water: floods, storms, and sea-rise. For others, it is drought: water shortages, crop losses, and wildfires. Floods killed 920 people in Belgium and Germany, 192 in India, 113 in Afghanistan, and 99 in China – in one month (July) of 2021. Deaths from floods and related landslides took the lives of people in Bangladesh, Japan, Nepal, Pakistan, and Yemen that same year. (Davies 2021)

“Flooding in Cedar Rapids, Iowa, USA.” Photographed by Don Becker, USGS, 2008. Dedicated to the public domain (CC1.0) by United States Geological Survey and included here with appreciation.

Previous data from weather sources tracked flood risk, resulting in flood insurance for many properties (and denial of such insurance for locations too vulnerable to merit rebuilding). Water damage will only increase with climate warming, as storms grow more powerful. Rising sea levels will escalate floods and coastal inundations. Those who live in the territories of the Colorado River know well another risk related to water: drought. Water scarcity has ravaged crops, parched residential landscapes, reduced drinking water supplies, and now threatens hydropower created by the Hoover Dam. Australia, the most arid continent on Earth, is vulnerable crop loss, and electricity reduction in facilities like Snowy Mountains Hydroelectric Power.

California Fires in 2021. “Erber Fire in Thousand Oaks,” by Venture County Fire Department Public Information Office. Dedicated to the public domain (CC1.0) and included here with appreciation.

Drought also brings another danger: wild fire. Fire risk is growing with climate warming. In 1980, fire damage in the United States tallied $10 billion; in 2021, costs reached $300 billion. Worldwide, fire affects 1.5 million square miles (four million square kilometers) of Earth – each year. To picture that, the area would measure one-half of the continental United States, or more than the entirety of India. Using data from satellites like the Copernicus Sentinel-3, and the European Space Agency (ESA). the Centre for Research on the Epidemiology of Disasters tracked 470 wildfire disasters (incidents affecting more than 100 people) since 1911, totaling $120 billion in damages. The 2021 Dixie Fire in California devoured 626,751 acres (253,647 hectares); that same year, in Siberia, wildfires destroyed 3.7 million acres (1.5 million hectares) to become the largest wildfire in documented history. In 2022, the Calf Canyon-Hermits Peak fire in New Mexico continues burning over 270,00 acres and is still (at this writing) only 29% contained. The cumulonimbus flammagenitus cloud ( or CbFg or pyroCb) from the fire could be seen from space on NASA’s Aqua satellite via MODIS.

What’s your property’s climate risk? Photography by Antan0, 2010. Image of magnifying glass. CC4.0; included here with appreciation.

Would you like to know what the future looks like in your area? Now, a new mapping technology from the First Street Foundation can help you determine your risk. If you live in the United States, enter your street address, or your zip code, and you will see if you are one of 30 million properties vulnerable to flooding or wildfire. To assess your own property’s risk, click here.

Aqua Mission. Earth Observing System, NASA. https://aqua.nasa.gov/content/aqua-earth-observing-satellite-mission

Centre for Research on the Epidemiology of Disasters. https://www.cred.be

Copernicus Sentinel-3. “Measuring Earth’s oceans, land, ice, and atmosphere to monitor and understand global dynamics.” European Space Agency (ESA). https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-3

Davies, Richard. “Worldwide – Over 920 People Killed in Floods and Landslides in July 2021.” 2 August 2021. Floodlist. https://floodlist.com/asia/world-floods-july-2021

First Street Foundation. “Make climate risk accessible, easy to understand, and actionable for individuals, governments, and industry.” https://firststreet.org/mission/

Haddad, Mohammed and Mohammed Hussein. “Mapping Wildfires around the World.” 19 August 2021. Al Jazeera. https://www.aljazeera.com/news/2021/8/19/mapping-wildfires-around-the-world-interactive

Risk Factor. “A property’s flood or fire factor.” https://riskfactor.com

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

 

Print Friendly, PDF & Email

May 12, 2022
by buildingtheworld
0 comments

CITIES: Fast Forward Food

“Noodle Bowl for Lunch” by Tran Mau Tri Tam, 2016. Wikimedia/Unsplash: CC0 1.0. Dedicated to the public domain by the photographer. Included with appreciation.

Cities are known for fast food: the drive-through, the grab and go, the snack stop, pop-up restaurants, food trucks, street cafes and food stalls. Fast food can also be found on shelves of urban convenience and grocery stores. One of the world’s favorite quick treats is the instant noodle. In 2020, 116 billion servings of instant noodles were enjoyed. (Cairns 2022)

“Singapore Skyline at Night with Blue Sky.” Merlion444, 2009. Wikimedia Creative Commons 1.0 public domain. Dedicated to the public domain by the photographer, Included here with appreciation.

Singapore, a city created with trade and diversity as founding principles, is home to the launch of new kind of instant noodle  –  good for taste and for the environment, too. Based in Singapore, WhatIF Foods has introduced a noodle made from the Bambara Groundnut.

“Vigna subterranea” as illustrated by A. Engler in Die Pflanzenwelt Ostafrikas und der nachbargebiete. Volume 2, 1895. This work is the public domain and is included with appreciation.

Bambara (Vigna subterranea) is in the legume family and grows underground (like peanuts): it originated in West Africa and is now grown across the world. It’s what is known, nutritionally, as a complete food: offering protein, carbohydrates, amino acids, minerals, vitamins, and fiber. WhatIF Foods produces “BamNut” flour made into noodles. The noodles are a bit pricier than the cheapest brands, but many people may value their superior nutrition.

Map of West Africa by Mondo Magic, 2009. Dedicated by the artist to the public domain (CC 1.0) and included here with appreciation.

Bambara Groundnut, or Vigna subterranea, currently comprises a very small part of food supply market (production in Africa is 0.3 million tons) versus the more traditional noodle dough made from wheat (776.6 million metric tons per year globally). But that may change – because Bambara is drought-tolerant. Many areas of the world already suffering drought (from states served by the Colorado River in the United States, to African and Australian areas experiencing drought and expecting more due to climate change and warming). Crops that can survive in dry soil will be in demand. Recent figures from the United Nations reveal that dry soil chokes 40% of agricultural land, and 56 acres (23 hectares) of arable land are lost to drought EVERY MINUTE.

“Corn shows the effects of drought in Texas,” by USDA’s Bob Nichols, 20 August 2013. This photo is the public domain and included here with appreciation to USDA and Bob Nichols.

There are 300,000 edible plant species, but just three (rice, maize, wheat) comprise 86% of all exports. According to Professor Victoria Jideani of Cape Peninsula University of Technology in South Africa, governments should subsidize agricultural diversity, such as the bambara groundnut, that can resist drought, support food security, and broaden the plant-based dietary options for a future-forward table. By 2050, 68% of the world’s people will live in cities. Land is limited, not only by population growth demands but also by agricultural needs. Optimal use of arable land will be one of the factors in balancing population, food security, and environment.

Bangkok, Thailand is a global megacity offering some of the tastiest food in the world, including legendary noodles. Image: “Food Stalls Bangkok,” by Ian Grattan, 2012. Wikimedia CC2.0. Included here with appreciation to Ian Grattan and Bangkok.

WhatIF Foods are currently sold in Singapore and produced in factories located in Australia and Malaysia, are sold in Asia, and in the regulatory approval process in the European Union. Privately financed, the company is now attracting investors. In the United States, you can purchase WhatIF products (noodles are just one of the products) online. Looking for instant noodle recipes? Here’s eight from eight countries.

Adetokunboh, Adeola, Anthony Obilana, Victoria Jideani. “Enzyme and Antioxidant Activities of Malted Bambara Groundnut as Affected by Steeping and Sprouting Time.” March 2022. Foods 11 (6): 783. DOI:10.3390/foods11060783

Cairns, Rebecca. “This Singaporean startup has reinvented the instant noodle.” 9 May 2022. CNN Business. https://www.cnn.com/2022/05/08/business/whatif-bamnut-sustainable-instant-noodles-climate-hnk-intl-spc/index.html

Cheetham, Peter and Christoph Langwallner, co-founders of WhatIF Foods. https://whatif-foods.com/

Jideani, Victoria. Cape Peninsula University of Technology, South Africa. https://www.researchgate.net/profile/Victoria-Jideani

United Nations Environment Programme. “#FridayFact: Every minute, we lose 23 hectares of arable land worldwide to drought and desertification.” 12 February 2018. https://www.unep.org/news-and-stories/story/fridayfact-every-minute-we-lose-23-hectares-arable-land-worldwide-drought

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

Print Friendly, PDF & Email

January 4, 2022
by buildingtheworld
0 comments

ENERGY: Coal Goals

“Land reclamation – restored land at the Seneca Yoast Coal Mine” by Peabody Energy, 2014. Image: wikimedia commons.

Energy goals to stop climate change are clear: we must transition from fossil fuels. Chief among the priorities is coal. Transitioning from coal threatens jobs: as coal declines in use, some areas formerly active in coal mining suffer 30% unemployment. Past efforts to offer new jobs in American coal-mining towns included $7 million to open an optometry school in Pikeville, Kentucky, where miners could train and practice a new profession. As the only college of optometry in Kentucky, UPIKE offers opportunity. Another option is work reclaiming abandoned mines to prevent mudslides and collapse, threats increasing in stronger weather due to climate change. Before the Surface Mining Control and Reclamation Act of 1977 (SMCRA), mining businesses were not required to clean up or reclaim sites.  Since then, 46,000 open mine portals have been reclaimed with water supplies restored and renewed. But mines left open prior to the law remain a threat, and $11 billion is required to reclaim the sites.

Transitioning from coal jobs will be an important goal. “Coal mining.” Illustration from The Graphic, 1871. Image: wikimedia public domain.

Rebuilding coal sites with renewable energy projects seems like a natural option. Coal mines are already abandoned, but not suitable for housing developments or office buildings. There are 130,000 former coal mines available for development. What about solar plants? That’s the idea of Edelen Renewables, now building a solar facility where 300 workers will install solar panels on 1,200 acres at a pay rate of $25-30 per hour. Miners usually make about $30 per hour. Workers will also earn a certificate. Solar is the fastest-growing source of renewable electricity in the United States, and tax-credits are only increasing growth.

“Coal Production in China: 1950-2012.” by Plazak, 2014, compiled from USEIA and US Bureau of Mines and Minerals Yearbooks. Image: wikimedia commons.

Coal generates 30% of world electricity. Coal power is decreasing in the U.S., but in Asia, specifically China, it is the source of 36% of energy. China recently promised to end financing of new coal plants outside its borders, but concerns remain as domestic use continues. But a new Chinese solar project in Anhui, built on a former collapsed and flooded coal mine, developed by China Energy Conservation and Environmental Protection Group (CECEP) and the French floating solar expert Ciel & Terre may be a sign of hope. Regional plans for sustainable energy infrastructure for Europe, Middle East, and North Africa include an array of renewable energy options.

“Sketch of possible infrastructure for sustainable supply of power for Europe, Middle East, and North Africa EU-MENA)” by Trans-Mediterranean Renewable Energy Cooperation. Image: wikimedia.

COP26 Glasgow net zero emissions pledges predict fossil fuel use to peak in 2025, CO2 emissions fall 40% by 2050 – but even that will drive temperature rise to 2.1 Centigrade. Coal is the largest source of energy-related CO2 emissions (He, et al., 2020). If pledges are kept, 13 million new workers will be employed in clean energy by 2030, and double that by 2050 (IEA 2021). Coal is not the only fossil fuel driving climate change: oil is even greater. Of world energy sources, coal is 27%, natural gas is 24%, and oil is 33%. But coal is a focus because it is especially polluting, leading to environmental and health dangers. Renewable energy is increasing, costs of solar, wind, and storage are decreasing. Eight European Union countries (Denmark, Finland, France, Ireland Italy, Netherlands, Spain, Portugal) declared phase-out of coal by 2030.

“Electricity for All: TVA” sign displayed at Franklin D. Roosevelt Presidential Library and Museum, Hyde Park, NY, USA. Photo by Billy Hathorn. Image: wikimedia.

In an earlier energy transition, the Tennessee Valley Authority (TVA) offered job training as well as worker housing communities. A new town, Norris, became a showroom for household uses of hydroelectricity from refrigerators to toasters.  More recently, the German Coal Commission (GCC) introduced a task force on job transition along with coal plant closures. Retraining coal miners, and workers along the entire supply chain, will accelerate and strengthen environmental justice and energy transition. How can the world move towards sustainable electricity for all?

Buckley, Cara. “Coming Soon to This Coal County: Solar, in a Big Way.” 2 January 2022. New York Times.

He, Gang, et al., “Enabling a Rapid and Just Transition away from Coal in China.” 21 August 2020. One Earth, Volume 3, Issue 2, pages 187-194. https://www.sciencedirect.com/science/article/pii/S2590332220303560 and https://doi.org/10.1016/j.oneear.2020.07.012

International Energy Agency (IEA). “Coal.” https://www.iea.org/fuels-and-technologies/coal

Kenning, Tom. “World’s largest floating solar plant connected in China.” 20 March 2019. PV Tech https://www.pv-tech.org/worlds-largest-floating-solar-plant-connected-in-china

Lohan, Tara. “Reclaiming Abandoned Mines: Turning Coal Country’s Toxic Legacy into Assets.” 29 March 2021. The Revelator. https://therevelator.org/abandoned-mines-legislation/

Lynn, Loretta. “Coal Miner’s Daughter.” https://www.youtube.com/watch?v=f9eHp7JJgq8

Eller, Ronald D. Uneven Ground: Appalachia Since 1945. University Press of Kentucky, 2008 and also 2013. ISBN: 9780813142463

Office of Surface Mining Reclamation and Enforcement, U.S. Department of the Interior. “Surface Mining Control and Reclamation Act” (SMCRA). P.L. 95-87, Enacted 3 August, 1977. https://www.osmre.gov/lrg.shtm

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

Print Friendly, PDF & Email

December 15, 2021
by buildingtheworld
0 comments

WATER: Jason and the Return of the Argonauts

“Argo Temperature/Salinity Float Network” by Dmcdevit, 2007 for Global Warming Art. License GNU Free 1.2. Image: wikimedia.

Recent tornadoes, storms, floods caused loss of life and damage of property. While warmer temperatures are known to fuel and intensify tornadoes, scientists are uncertain if tornadoes that swept across four U.S. states were caused by climate change. What is certain is unseen, but even more troubling. Antarctic currents are changing. The above NASA illustration shows the movement of ocean currents including the Antarctic Circumpolar Current:  at 1,200 miles (1,931 kilometers) wide and two miles (3 kilometers) deep, it is the globe’s largest current. Its motion draws the deepest water from the Atlantic, Indian, and Pacific oceans to swirl it to the surface. In the process, the water exchanges heat and carbon dioxide with the atmosphere. It’s called an upwelling.

“Upwelling” in an animation by NOAA. Image: public domain, wikimedia.

With a warming world, upwelling may release more carbon dioxide that had formerly been sequestered in the blue deep of the oceans. Oceans have sequestered 25% of carbon dioxide and 90% of excess heat from burning fossil fuels. What if that were to change? Moreover, the warming upwelling waters that travel through and beneath Antarctic are melting ice shelves like those near the Thwaites glacier. If those ice sheets melt into the ocean, sea rise could advance by as much as 12 feet (3.66 meters). Ice sheets act as a blockade, protecting glaciers: if that blockade breaks, glaciers will also melt more quickly and release even more water to rising seas. (Fountain and White, 2021) Watch a video about the Thwaites glacier here.

“Thwaits Glacier.” NASA, 2014. Public domain, wikimedia.

What can be done? Gathering more data is a first step. Robotic autonomous floats called ‘Argo Floats‘ are a small army of 3900 presently bobbing in the world’s oceans, sending back data. When below water for their ten-day shift, Argo Floats gather data; when they pop up to the surface, they transmit. The National Oceanic and Atmospheric Administration (NOAA)  and the Global Ocean Monitoring and Observing (GOMO) program is named after the mythical Jason and the Argonauts who sailed to find the Golden Fleece.

“Scenes from the Story of the Argonauts” by Biagio d’Antonio, circa 1472-1516. From the Metropolitan Museum of Art, donated to wikimedia for public domain open access use.

Jason and the Argonauts may be one of the oldest myths of a hero’s quest. The present initiative references not only the ancient Greek myth, but also the ocean mission. The title also indicates its complementary relationship with the Jason satellite altimeters that study the situation from above. The instruments called ‘Argo Floats:’ the measurements of sea surface height are termed ‘Jason measurements’ that report temperature and salinity. (Brown 2019). In 2020, Antarctica observed a 200-year anniversary. Polar regions are among the most important places for climate change, due to a process termed polar amplification. The Antarctic Treaty, signed in 1959, offers some protections, but the ban on mining of Antarctic minerals expires in 2048. If or when the Antarctic Treaty is revised, what provisions should be upheld, changed, or added?

Argo Program. NOAA. https://globalocean,noaa.gov/Research/Argo-Program

Brown, Fiona “What we learnt from spending winter under the Antarctic sea ice.” 15 May 2019. CSIROscope. https://blog.csiro.au/

Fountain, Henry and Jeremy White. “Rising from the Antarctic, a Climate Alarm.” 14 December 2021. New York Times. https://www.nytimes.com/interactive/2021/12/13/climate/antartic-climate-change.html?referringSource=articleShare

Institute for Marine and Antarctic Studies (IMAS). “Geoengineering The Southern Ocean? A Transdisciplinary Assessment.” University of Tasmania, Australia. https://www.imas.utas.edu.au/home/home-features/arc-laureate-fellowship-geoengineering-the-southern-ocean-a-transdisciplinary-assessment

Jason satellite program mission. NOAA. https://sealevel.jpl.nasa.gov/missions/jason-1/summary

Ramirez, Rachel. “Scientists warn a critical ice shelf in Antarctica could shatter within five years.” 14 December 2021. CNN. https://www.cnn.com/2021/12/14/world/antarctic-thwaites-glacier-climate-warming/index.html

Silvano, Alesandro et al., “Seasonability of warm water intrusions onto the continental shelf near the Totten Glacier.” 3 May 2019. Journal of Geophysical Research: Oceans/Volume 124, issue 6, pages 4272-4289. https://doi.org/10.1029/2018JC014634 and https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JC014634

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

 

Print Friendly, PDF & Email

September 16, 2021
by buildingtheworld
0 comments

ENERGY: Jobs of the Future

Jobs of the Future will focus on renewable energy. Image: “Energy on the Grid,” by photographer Kenueone, 2016. Public Domain CC0 1.0. Original image: https://pixabay.com/electricity-sun-wind-1330214.

Born after 1996? Or 1981? You are 70% more likely to rate climate change as the top priority for your future (Pew Research Center 2021). Universities are responding, integrating climate and environmental studies into the curriculum. University of Massachusetts Boston founded the School for the Environment, as well as the Sustainable Solutions Lab and Stone Living Lab. MIT’s Environmental Solutions Initiative (ESI) founded in 2014 involves design, engineering, humanities, policy, science, social science, and technology. Harvard’s Center for the Environment (HUCE) offers research, policy, science, climate leaders program, and special events like “Literature for a Changing Planet.” University of Southern California inaugurated “Sustainability Across the Curriculum” weaving the environment into majors of  20,000 undergraduates.

“Shift Change at Clinton Engineering Works, Oak Ridge, TN, August 1945,” by Ed Westcott, US Army photographer. Public Domain. Over 82,000 people were employed. Energy jobs will dominate the future.

Upon graduation, a new generation will find the jobs of the future. Throughout history, great undertakings, like the Manhattan Project, Snowy Mountains Hydroelectric, attracted those seeking careers in new energy. Now, a similar surge in energy employment means you can do well by doing good: average pay for climate scientists is $73,230; environmental lawyers earn median salary of $122,960. Not all jobs require traditional degrees: urban farmers earn $71,160. (US Bureau of Labor Statistics/Guardian 2021).

“New Crops: Chicago Urban Farm,” by Linda N. Creative Commons CC 2.0. Wikimedia.

According to the International Energy Agency (IEA), the transition to a global net zero energy system will see renewables like solar and wind power dominate, while bioenergy and carbon capture will develop innovative approaches. There are 400 milestones to guide development, with total annual energy investment of $5 trillion by 2030.

Education + Jobs = Health of the Planet. Graphic by Nevit Dilmen, 2011. Image: creative comons, public domain.

Climate change will cause an era of innovation more comprehensive than we have seen in the history of the world. Every field will be impacted; every field will see innovation. Rachel Larrivee, 23, Boston-based environmental consultant, says it well: “I’m in the first generation who knows the extent to which climate change poses an existential threat to life on Earth, and also the last generation who may be able to do anything about it.” (Lashbrook, 2021.)

International Energy Agency (IEA). “Net Zero by 2050: A Roadmap for the Global Energy Sector.” Report May 2021. https://www.iea.org/reports/net-zero-by-2050

Lashbrook, Angela. “‘No point in anything else:’ Gen Z members flock to climate careers. Colleges offer support as young people aim to devote their lives to battling the crisis.” 6 September 2021. The Guardian. https://www.theguardian.com/environment/2021/sep/06/gen-z-climate-chnage-careers-jobs

Pew Research Center, by Alec Tyson, Brian Kennedy, Cary Funk. “Gen Z, Millennials Stand Out for Climate Change Activism, Social Media Engagement With Issue.” May 2021. https://www.pewresearch.org/science/wp-content/uploads/sites/16/2021/05/PS_2021.05.26_climate-and-generations_REPORT.pdf

Thanks to Yujin Asai of dotmeta.com for sharing this research.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

Print Friendly, PDF & Email

February 18, 2021
by buildingtheworld
0 comments

ENERGY: Genie in a Bottle

“Genie in a Bottle,” from Stripped Tour, Christina Aguilera Image: wikimedia.

February 18, 2021. It’s National Battery Day. What is this genie in a bottle that we call a battery?

Lithium-ion batteries are making news. It’s a technology popularized in 1991, when rechargeable lithium-ion batteries were first used in hand-held camcorders. A decade later, Apple began using these batteries in smartphones. When electric cars entered the market (Edison worked on one, before Henry Ford invented the gasoline-driven automobile), batteries became the way to power the future. SEMATECH introduced a new industry, and now two new semiconductor materials – gallium nitride (GaN) and silicon carbide (SIC) are now being used in EV batteries. With General Motors (GM) pledging a full transition from gas and diesel to electric vehicles by 2035 (Ford, Tesla, Volkswagen and others in similar quests), the race is on.

“Tesla Model S at a Supercharger station.” Image: wikimedia.

Who’s Who (a partial list) in Electric-Vehicle Batteries:

CATL or Contemporary Amperex Technology Col, Limited, founded in 2011 in China, announced an increased investment of $4.5 billion on 4 February 2021. CATL will open a new plant in Zhaoqing, Guangdong Province, upgrade a plant in Yibin, Sichuan Province, and expand a joint venture plant with automaker China FAW Group. A new plant in Germany is also under construction. (300750:CH)

LG Chem in South Korea, world’s biggest EV battery manufacturer, just announced its battery division would now be a stand-alone business. LG counts GM, Geely Automotive Holdings Shanghai Maple Guorun Automobile Co., Hyundai Motor Group, and Tesla among its customers. Tentative name for the new business: LG Energy Solutions. (LGCLF)

Nissan Motor Co. and American Electric Power are competitors with a different strategy: reusing old EV batteries with a technology to extend lithium-ion battery life by over 30%. The experiment uses Nissan Leaf expired-batteries with a method developed by Melbourne-based Relectrify. BMW AG and Toyota are also reusing cells in EV charging. (NSANY)

Novonix is working with Dalhousie University on battery material research, noting new deals with Tesla on synthetic graphite. (NVNXF)

Panasonic. Tesla is in talks with Indonesia to build a battery cell factory with Panasonic. (PCRFY)

QuantumScape is introducing solid-state batteries lithium-metal batteries, offering a faster charge, longer life, and increased safety. The San Jose, California company filed with the SEC for a new development on 1 February 2021. (QS)

Tesla. Bringing battery production in-house has been a goal for Elon Musk who introduced a ‘tab-less’ battery called 4680 that will produce a 16% increase in range for the company’s electric vehicles. They new cells measure 46 millimeters by 80 millimeters. (TSLA)

Zinc Copper Voltaic Pile. Image: wikimedia.

The oldest battery known to history was found in Baghdad: a clay pot containing a metal tube and rod. But when Alessandro Volta discovered that zinc and coper, placed in a saline or acid solution, could transform zinc into a negative pole and copper into a positive pole, the action began. Chevrolet named one of its early EV models a “Volt.”

Will batteries advance hydroelectric power? Image: Hoover Dam, wikimedia.

Battery storage may transform hydroelectric power In Chile, a 50 megawatt-hour (MWh) battery energy storage project (think the equivalent of 5 million iPhones) will be paired with a hydroelectric facility, to store generated energy without need to construct a dam or reservoir. Will the Hoover Dam explore this technology, with consideration to drought affecting Lake Mead? It was hydroelectric power that first fascinated Nikola Tesla who, looking at a photo of Niagara Falls, said: “Someday I’ll harness that power.”

Battery Council International. “It’s national battery day.” www.batterycouncil.org

Hareyan, Armen. “Rumor says Tesla may have completed 1st round of Indonesia battery talks involving Panasonic.” 12 February 2021. Torque News. https://www.torquenews.com/1/rumor-says-tesla-may-have-completed-1st round-indonesia-battery-talks-involving-panasonic

Hawkins, Andrew J. “Tesla announces ‘tabless’ battery cells that will improve the range of its electric cars.” 22 September 2020. The Verge. https://www.theverge.com/2020/9/22/21449238/tesla-electric-car-battery-tabless-cells-day-elon-musk

Kawakami, Takashi. “EV-battery giant CATL to boost capacity with $4.5bn investment.” 4 February 2021. NikkeiAsia.com. https://asia.nikkei.com/Business/Automobiles/EV-battery-giant-CATL-to-boost-capacity-with-4.5bn-investment

Kubik, Marek. “Adding Giant Batteries To This Hydro Project Creates A ‘Virtual Dam’ with Less Environmental Impact.” 23 May 2019. Forbes. https://www.forbes.com/sites/marekkubik/2019/05/23/adding-giant-batteries-to-this-hydro-project-creates-a-virtual-dam-with-less-environmental-impact

Schmidt, Bridie. “EV battery material firm Novonix strengthen ties with Dalhousie University.” 15 February 2021. The Driven. https://thedriven.io/2021/02/15/ev-battery-material-firm-novonix-strengthen-ties-with-dalhousie-university

Semiconductor Review. “How Semiconductor Advancements Impact EV Batteries.” 26 October 2020. Semiconductor Review. https://www.semiconductorreview.com/news/how-semiconductor-advancements-impact-ev-batteries-nwid-124.html

Stringer, David and Kyunghee Park. “Top Electric-Car Battery Maker Wins Approval for Company Split.” 30 October 2020. Bloomberg News and Transport Topics. https://www.ttnews.com/articles-top-electric-car-battery-maker-wins-approval-company-split

Stringer, David. “Companies Explore Using Old Electric Car Batteries to Cut Costs.” 24 January 2020. Transport Topics. https://www.ttnews.com/articles/companies-explore-using-old-electric-car-batteries-cut-costs

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

Print Friendly, PDF & Email

December 31, 2020
by buildingtheworld
0 comments

ENERGY: 2020 by the Numbers

The year 2020 will go down in history for many reasons, including climate change. Temperatures were 1.08 degrees Fahrenheit (0.6 Celsius) warmer than the 1981-2010 average and 2.25 degrees Fahrenheit (1.25 Celsius) above pre-industrial times. Rising temperatures have consequences. In January of 2020, Australia suffered wildfires burning an area bigger than Florida. In summer, Atlantic hurricane season brought 30 named storms, carrying more water (warming oceans produce more water, higher waves, increased flooding). Western United States areas like California, Nevada, Oregon, Washington witnessed fires that destroyed 10.3 million acres. In the Arctic, data from the Copernicus Climate Change Service showed the region is warming faster than feared, more than twice the pace as the rest of the globe, with 5.4 degrees Fahrenheit (3 degrees Celsius). Environmental scientists noted that 2020 set a record for carbon dioxide concentrations, rising to 413 ppm (parts per million) in May of 2020, even with Covid-19 lockdowns. (Kann and Miller, 2021)

“Wildfire in Santa Clarita, California.” Image: wikimedia.

Price tag? $95 billion. And that’s just for U.S. climate-related damage, according to Munich Re, insurance company to other insurance firms that covered damage from Atlantic storms and California wildfires. Chief climate scientist of Munich Re Ernst Rauch warned that building in high-risk areas added to losses. Hurricanes  were significant in damage, causing $43 billion in losses. Convective storms (like hailstorms and tornadoes) caused $40 billion. Wildfires added up to $7 billion including destruction of crops, endangering food security. Residential and business properties sustained damage and claimed insurance losses, over 4000 properties in Oregon and many more in California. According to Donald L. Griffin of American Property Casualty Insurance Association, “We can’t, as an industry, continue to just collect more and more money, and rebuild and rebuild and rebuild in the same way.” (Flavelle, 2021) Beyond the United States, the numbers are just as dire. Cyclone Amphan struck Bangladesh and India in May, resulting in $14 billion in damage. Asia sustained $67 billion in losses from natural disasters.

Cyclone Amphan May 2020. Image: wikimedia commons.

What does this mean for 2021? Following the money and perhaps led by the insurance industry, new ways to rebuild may lead us into the New Year. We’ll take a look at some hopeful trends, next.

American Property Casualty Insurance Association. https://www.apci.org

Flavelle, Christopher. “U.S. Disaster Costs Doubled in 2020, Reflecting Costs of Climate Change.” 7 January 2021. The New York Times. https://www.nytimes.com/2021/01/07/climate/2020-disaster-costs.html?referringSource=articleShare

Kann, Drew and Brandon Miller. “2020 was tied for the hottest year ever recorded — but the disasters field by climate change set it apart.” 8 January 2021. CNN.com. https://www.cnn.com/2021/01/08/weather/2020-global-temperatures-tied-for-warmest-on-record-copernicus/index.html

Munich Re. https://www.munichre.com/en.html

Thanks to Jason W. Lusk for editorial guidance and suggestions.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

Print Friendly, PDF & Email
Skip to toolbar