Building the World

ENERGY: (Re)Vision for Coal

| 0 comments

Coal-fired power plants, repurposed, may offer great innovation opportunities. Image: “Coal burning” by Diddi4, 2017. Creative Commons CC0. Included with appreciation.

Many are terming COP28 as the “beginning of the end.” While the desired wording of “phasing out” degraded into “transitioning,” still it was the first time directly naming and targeting “fossil fuels in energy systems.”

Of the three primary fossil fuels (coal, oil, natural gas), coal is the most polluting. And it is also very expensive to mine: digging enormous holes in the ground, hauling up heavy materials, crushing, washing, transporting coal to plants that themselves are both expensive to run and in need of repair, replacement, or retirement. More than 80% of U.S. coal plants cost more to keep running than to replace with new forms of energy generation. Regulations will accelerate closings: the 2028 laws concerning protecting drinking water from coal ash and other toxins may make compliance prohibitively costly. Duke Energy announced intention to close 11 coal-fired power facilities earlier than expected, at the same time declaring a move to renewable energy investment.  Georgia Power stated it would close all of its 14 coal plants (by 2035) while pivoting to solar and wind. Peabody Coal, largest private company in the coal business in the world, recently announced investment in solar and storage. (Marcacci, 2022).

Coal is the most polluting of the fossil fuels. Image: “Close up of smoke from coal stack” by John L. Alexandrowicz, 1975, National Archives and Records Administration, USA. Public Domain Creative Commons CC0. Included with appreciation.

Even if soon becoming obsolete in their original purpose, repurposed coal plants offer a valuable asset: they are already wired to the grid. That’s why repurposing rather than decommissioning coal-fired power plants may be a great opportunity. And, it should be noted that repurposing plants will keep jobs, taxes, and revenues in the community. Here’s two examples of advantageous repurposing of coal-fired power plants.

Brayton Point went from coal to wind. Image: “Aerial view of Brayton Point Power Station,” circa 1990, from Massachusetts Department of Environmental Protection. CC2.0. Included with appreciation.

Brayton Point Power Station was once the biggest coal-fired power plant in New England, generating 1600 MW of electrical power for more than half a century. In 2017, the plant closed. One year later, Commercial Development Company, Inc., (CDC) bought what was left and started the process of clean-up, needed demolition, site re-grading, and preparing for a new vision. With 300 acres (121 hectares) on a spacious waterfront with a 34-feet (10 meters) deep water port, the site was advantageous. Brayton Point offered access to the powerful winds of the Atlantic Ocean. When partner Prysmian Group signed on to acquire 47 acres for construction of a subsea cable manufacturing facility, coal-to-wind transition was born with a planned energy capacity of 30GW. Partner Mayflower Wind will also take a role, bringing 1,200 MW to Brayton Point from its wind farms 30 miles (48 kilometers) off island Martha’s Vineyard and 20 miles (32 kilometers) off Nantucket. Brayton Point will serve as a valuable nexus for wind energy because it has legacy grid connections. A National Grid substation will bring power to one million homes. Further benefits are construction jobs (325) and area revenues ($250 million). More opportunities will open for tenants on the newly designed site.

Space Solar Power, wirelessly beamed to Earth, could use retired, repurposed coal-fired power plants as receiving and transmission stations. There are over 8,000 on the planet – offering an instant global distribution network. Caltech demonstrated success in 2023. Image: “Solar Power Satellite Concept” by NASA, 2011. Public domain image included with appreciation.

A powerful possibility is using former coal-fired power plants as land stations to receive and transmit space solar power. In 1971, visionary Peter E. Glaser filed US patent application US00165893A for “Method and apparatus for converting solar radiation to electrical power.” NASA started work on Glaser’s idea, but at the time space technology was not developed sufficiently to realize the potential.  In 2023, the dream became vision with demonstrated proof. Caltech’s Space Solar Power Project (SSPP) and its Microwave Array for Power-transfer Low-orbit Experiment (MAPLE) sent a space solar power prototype into orbit, and wirelessly transmitted to a receiver on Earth – March 3, 2023 was the exact moment. The success was designed by a Caltech team led by Bren Professor of Electrical Engineering and Medical Engineering, co-director of SSPP, Ali Hajimiri. It was with the help of Donald Bren, chair of Irvine Company. Bren had read an article in Popular Science as a young person and never forgot the concept. A series of donations launched the Caltech project. Northrop Grumman also donated. It might be noted that when space-based wireless power arrives on earth, the energy source may need receiving stations. Rather than build a whole new network, repurposed coal-fired plants, already connected to the grid, might stand at the ready to realize a new power system. With over 8,000 coal-fired power plants already in place, coal-fired power plants may be the ideal, already-built, global network for reception and distribution of space solar power.

California Institute of Technology (Caltech). “In a first, Caltech’s space solar power demonstrator wirelessly transmits power in space.” 1 June 2023. Caltech. Includes VIDEO. https://www.caltech.edu/about/news-in-a-first-caltechs-space-solar-power-demonstrator-wirelessly-transmits-power-in-space

Commercial Development Company, Inc. “Case Study: Repurposing New England’s Largest Coal-Fired Power Plant for Offshore Wind Energy.” 2023. https://www.cdcco.com/brayton-point/

Glaser, Peter E. “Method and apparatus for converting solar radiation to electrical power.” 1971. United States Patent application US00165893A. https://patents.google.com/patent/US3781647A/en

Hajimiri, Ali. “How wireless energy from space could power everything.” TED2030. https://go.ted.com/67UN

Marcacci, Silvio. “So much for coal’s rebound – plant closures come roaring back. It’s time to unlock a just transition.” 15 March 2022. Forbes. (Audio available). https://www.forbes.com/sites/energyinnovation/2022/03/15/so-much-for-coals-rebound-plant-closures-come-roaring-back-smart-policy-must-unlock-a-just-transition/

United Nations. Framework Convention on Climate Change. “First Global Stocktake,” 13 December 2023. FCCC/PA/CMA/2023/L.17. https://unfcc.int/sites/default/files/resource/cma2023_L17:adv.pdf

World Bank Group, Energy Sector Management Assistance Program. “Coal plant repurposing for ageing coal fleets in developing countries.” Technical report 016/21. License: Creative Commons 3.0 https://documents1.worldbank.org/curated/en/144181629878602689/pdf/Coal-Plant-Repurposing-for-Ageing-Coal-Fleets-in-Developing-Countries-Technical-Report.pdf

Yale Environment 360. “Canadian Coal-Fired Power Plant Transformed into Solar Farm.” 8 April 2019. Yale E360 Digest. https://e360.yale.edu/digest/canadian-nanticoke-coal-fired-power-plant-transformed-in-solar-farm

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 U

 

 

 

Print Friendly, PDF & Email

Leave a Reply

Required fields are marked *.


Skip to toolbar