TRANSPORT: Sugar High

“United Boeing 767-300ER taking off from London Healthrow” by photographer and aerospace engineer Adrian Pingstone, 2007. Public Domain wikimedia commons.

Air transport, first achieved in December 1903, reached an important milestone in December  2021. United Airlines flew a commercial jet with a full complement of guest passengers entirely on renewable, non-fossil, fuel derived from sugar and corn. The flight Chicago ORD to Washington DCA flight carried 100 passengers using 100% sustainable fuel (SAF). The achievement followed United’s 2019 Flight for the Planet demonstrating biofuel blend energy, zero cabin waste, and carbon offsetting. The 2021 United success also announced new partners in the Eco-Skies-Alliance, and a pledge to purchase non-petroleum feedstocks to deliver the same performance of petroleum-based jet fuel but with a much smaller environmental effect.

“Sugarcane” by photographer Biswarup Ganguly, 2010. GNU Free/CC3.0 wikimedia.

Sugarcane ethanol is produced by fermenting sugarcane juice and molasses. Brazil and the USA are among the world areas engaged in biofuel production from sugar and corn, with scientific innovations on fermentative processes. There are concerns about land use for biofuel, and deforestation, but SAF remains an important element in new energy options. Brazil is a leader in sugar-based fuel, while U.S. expertise is mainly in corn. (Kang and Lee 2015). The U.S. biofuel industry has created 68,000 jobs, produced 17 billion gallons of sustainable fuel, and saved 544 million metric tons of Co2 from entering the atmosphere. (Minos 2021)

“Refueling a plane in Athens.” by photographer Jebulon. Wikimedia CC1.0 Public Domain.

While biofuels are arguably not as clean and green as electric or solar flight (achieved by small commuter planes such as eGenius), sustainable fuel is a practical step because it works with existing flight infrastructure like aircraft engines, refueling equipment, maintenance, and airport design.”SAF can be 100% compatible with our current aviation fleet and infrastructure,” observed Dave Kettner of Virent, among the partners who flew on the historic occasion, joined by World Energy biofuel producer and distributor, Boeing, CFM International, and U.S. Department of Energy’s Bioenergy Technologies Office. Electric vehicles may be the answer for automobiles, buses, and trucks: the U.S. Federal Highway System and other major roads of the world will be rebuilt with charging stations and lanes for autonomous vehicles. The Canadian Pacific Railway or Japan’s Shinkansen can be adapted for maglev, electric, or hyperloop trains. But maritime shipping and aviation are not as easily converted from fossil fuels. Air transport has just taken an important step toward a more sustainable future.

Kang, Aram and Taek Sooon Lee. “Converting sugars to biofuels: ethanol and beyond.” 27 October 2015. Bioengineering. doi: 10.3390/bioengineering2040184.

Lewandowski, Jan. “Building the Evidence on Corn Ethanol’s Greenhouse Gas Profile.” 29 July 2021. U.S. Department of Agriculture. https://www.usda.gov/media/blog/2019/04/02/building-evidence-corn-ethanols-greenhouse-gas-profile

McCue, Dan “United Airlines makes history flying the most eco-friendly commercial flight of its kind.” 11 June 2019. Renewable Energy Magazine. https://www.renewableenergymagazine.com/biofuels/united-airlines-makes-history-flying-the-most-20190611

Minos, Scott. “United Airlines first passenger flight using 100% sustainable aviation fuel is officially off the ground!” 1 December 2021. U.S. Department of Energy. https://www.energy.gov/energysaver/articles/united-airlines-first-passenger-flight-using-100-sustainable-aviation-fuel

Smithsonian National Air and Space Museum. “Inventing a flying machine.” https://airandspace.si.edu/exhibitions/wright-brothers-online/fly/1903/

United Airlines. “United to become first in aviation history to fly aircraft full of passengers using 100$ sustainable fuel.” 1 December 2021. United Airlines News Release. https://www.prnewswire.com/news-releases/united-to-become-first-in-aviation-history-to-fly-aircraft-full-of-passengers-using-100-sustainable-fuel-301435009.html

World Energy. https://www.worldenergy.net

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

TRANSPORT: Rebuilding Back Better

“Leonard P. Zakim Bunker Hill Memorial Bridge” by Eric Vance, United States Environmental Protection Agency (EPA), 2011. Image: Public Domain, Wikimedia.

Transportation infrastructure is one of the paths to a better future. From electric vehicle charging stations, to bridge repair or replacement, American roads will soon experience the biggest rebuilding project since the US Federal Highway System of 1956. Here’s a summary of what to expect over the next five years (Lobosco and Luhby, 2021):

Roads – $110 billion for road repair and upgrades. It is estimated that 173, 000 miles of US roads are in bad condition;

Trains -$66 billion for passenger and freight trail, modernizing the Northeast corridor, and upgrading intercity rail to high-speed capability, with additional funds of $12 billion;

Broadband – $65 billion to improve reach and signal strength of Internet;

Bridges – $40 billion to repair or replace the 45,000 bridges in poor shape;

Public Transit – $39 billion to modernize and upgrade subways and buses;

Airports – $25 billion to repair aging airports and upgrade to low-carbon tech;

Marine Ports – $17 billion for improving marine ports, a major part of the supply chain;

Safety – $11 billion for better protection for cyclists and pedestrians;

Buses and Ferries – $7.5 billion for zero or low-emission ferries and school bus transport;

Electric Vehicles – $7.5 billion for a national network of electric charging stations;

Communities – $1 billion to reconnect neighborhoods divided by highways. This was one of the goals of the Central Artery Project in Boston.

In addition to the transport upgrades, the American Infrastructure Bill will begin rebuilding the electric grid ($65 billion) and correct water infrastructure problems from Flint to Benton Harbor and beyond, replacing lead service lines and old pipes. Finally, uncapped gas wells and abandoned mines will be remedied with a $21 billion fund. The Infrastructure Investment and Jobs Act (HR 3684) passed on 6 November 2021, as nations gather in Glasgow to address response to climate change at COP26. It is now time to rebuild the world.

Lobosco, Katie and Tami Luhby. “Here’s what’s in the bipartisan infrastructure bill.” 5 November 2021. CNN.com. https://www.cnn.com/2021/07/28/politics/infrastructure-bill-explained/index.html

United States Congress. “H.R. 3684: Infrastructure Investment and Jobs Act.” https://www.govtrack.us/congress/bills/117/hr3684/text

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

 

TRANSPORT: supply chain reaction

The Silk Road was an early transport and supply chain network. Image: “Seidenstrasse GMT” 2005 by Captain Blood, GNU free license, wikimedia commons.

From the Silk Road to the Suez Canal, transporting goods has shaped civilization, stimulated cultural exchange, and truly united the world. Presently, the global supply chain is in the news. Cargo tankers are stalled in ports, dock unloading is stalled by COVID restrictions, trucks are waiting for drivers, warehouses are stuffed with unshipped goods, local stores are limiting purchases and warning shoppers to buy early. All this costs both time and money: McKinsey reports shipping costs are six times higher than in 2019. (Hall 2021)

“Where is shipping heading?” Photo: Fleet 5. by U.S> Navy/PH3 Alta I. Cutler. ID: 020418-N-1587 C-030. Source: United States Navy. Image: wikimedia commons.

While government has stepped in, opening certain ports 24/7; and private enterprise has stepped up, chartering their own ships and diverting them to less congested ports; what will happen after the holiday buying season? Some say it is an opportunity for autonomous transport. Maritime shipping is exploring options. Experiments on inland waterways by the Collaborative Autonomous Shipping Experiment (CASE) in cooperation with Belgium, China, Italy, and the Netherlands, noted that control algorithms should be coordinated. Vessels are usually owned and operated by different parties, and use proprietary systems for control and navigation. Results produced simulation models that may help develop shared systems.

“Will autonomous trucks change the supply chain reaction?” Photo by epsos.de, https://www.flickr.com/photos/36495803@NO5/5591761716. Image: wikimedia commons. CC2.0

When ships are unloaded, trains and trucks take over: autonomous trucking is advancing rapidly. Embark Trucks, and Locomation, join TuSimple, Plus, and Aurora in the race for innovation and investment in autonomous trucking. Advances in trucking will change the supply chain: 68% of all freight comes to you on a truck.

“Supply Chain Network” graphic by David Pogrebeshsky, 2015. Image: wikimedia commons cc4.0

Analysts predict the supply chain will recover by 2022, but will it ever be the same? We hear a lot about self-driving cars, but there is also significant innovation in shipping and trucking. Autonomous transport may cause a supply chain reaction.

Aurora. https://aurora.tech

Efrati, Amir. “Two More Self-Driving-Truck Developers Consider Public Offerings.” 9 June 2021. The Information. https://www.theinformation.com/articles/two-more-self-driving-truck-developers-consider-public-offerings

Embark Trucks. https://embarktrucks.com

Farooque, Faizan. “4 Self-Driving Truck Stocks You Need to Keep an Eye on.”  9 September 2021. NASDAQ.com. https://investorplacecom/2021/09/4-self-driving-truck-stocks-you-need-to-keep-an-eye-on/

Hall, Claire. “Supply Chain Disruptions Create Shortages of Goods Just in Time for the Holidays.” University of Connecticut interview with Professor Tao Lu, Operations and Information Management Systems. 12 October 2021. https://today.uconn.edu/2021/10/supply-chain-disruptions-create-shortages-of-goods-just-in-tme-for-the-holidays/

Haseltalab, Ali, et al., “The Collaborative Autonomous Shipping Experiment (CASE): Motivations, Theory, Infrastructure, and Experimental Challenges. International Ship Control Systems Symposium (ISCSS) 2020, Delft, The Netherlands. For Project: Navigation and Path Planning of Marine Vehicles. DOI:10.24868/issn.2631-8741.2020.014

Inland Waterways International. https://inlandwaterwaysinternational.org

Locomation. https://locomation.ai

Metzger, Joe, Executive Vice President, Supply Chain Operations, Walmart US, “How Walmart is Navigating the Supply Chain to Deliver this Holiday Season.” 8 October 2021. https://corporate.walmart.com/newsroom/2021/10/08/how-walmart-is-navigating-the-supply-chain-to-deliver-this-holiday-season

Plus. https://www.plus.ai

TuSimple. https://www.tusimple.com

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

 

TRANSPORT: Caring Cars

Could cars be taught to care? “Ford Argo AI,” 2019. Photo by Tony Webster. Creative Commons, Wikimedia.

“Autonomous vehicles (AVs) are never drunk or tired or inattentive,” states Julian De Freitas, of the Harvard Business School and Ethical Intelligence Lab. Over 90% of traffic accidents and deaths (1.35 million fatalities globally) are due to driver error. Smarter vehicles could save lives to an extent equal to the discovery of vaccines and antibiotics, but will consumers trust these cars? Can vehicles evaluate, think, and drive with “common sense?” Ethical dilemmas such as whether an AV should save pedestrians or passengers is one of the pressing issues facing car manufacturers giving brains and hearts to their products. Will highway systems, like the Germany’s Bundesautobahn System of 13, 183 km (8. 192 mi), or US Federal Highway System, develop dedicated lanes for AVs? Insurance and legal concerns will set new regulations. Does technology carry the liability, or human operators? Many people feel they identify with their cars: will cars become more like people? Want to take a drive?

Argo AAI. www.argo.ai

Associated Press. “Ford, Argo AI to Deploy Autonomous Vehicles on Lyft Network.” 21 July 2021. US News. https://www.usnews.com/news/business/articles/2021-07-21/ford-argo-ai-to-deply-autonomous-vehicles-on-lyft-network

Blanding, Michael. “Can Autonomous Vehicles Drive with Common Sense?” 17 August 2021. Working Knowledge, Harvard Business School. https://hbswk.hbs.edu/item/can-autonomous-vehicles-drive-with-common-sense

De Freitas, Julian, et al., edited by Susan T. Fiske. “From driverless dilemmas to more practical commonsense tests for automated vehicles.” 16 March 2021.  Proceedings of the National Academy of Sciences (PNAS), 118 (11) e2010202118. https://doi.org/10.1073/pnas.2010202118.

Maurer, M. et al., editors. Autonomous Driving. Berlin: Springer, 2016.

Nader, R. Unsafe at Any Speed: The Designed-In Dangers of the American Automobile. New York: Grossman, 1965.

Pogue, David. “Self-Driving Cars.” 17 May 2019. CBS Sunday Morning. VIDEO. https://www.youtube.com/watch?v=ugNJJf2QW0E

Schmelzer, Ron. “What Happens When Self-Driving Cars Kill People?” 26 September 2019. Forbes. AUDIO and print article. https://www.forbes.com/sites/cognitiveworld/2019/09/26/what-happens-with-self-driving-cars-kill-people/

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

TRANSPORT: Linking the World

“Ancient Silk Road,” image: wikimedia commons.

The history of civilization may be measured by connection. First it was the Silk Road that connected cities; then it was the age of ships that created ports from Singapore to Suez.  Canals threaded connection through waterways, making one route from inland to sea: the Grand Canal, Canal des Deux Mers, Erie, Panama. Rail linked continents: the Trans-Continental, Canadian Pacific, and the Trans-Siberian united people across vast spans. But each of these achievements was a separate project.

“Belt and Road Initiative.” graphic design by Mathildem 16, 2020. Image: wikimedia.

BRI or B3W? Now, there are two plans to connect the world in a more comprehensive way: the “Belt and Road Initiative” (BRI) announced and begun in 2013 by China, and the “Build Back Better for the World” (B3W) proposed by the G7 in 2021. China is ahead: more than 100 countries have signed BRI agreements. Some comment that the BRI is able to move quickly from plan to construction of new ports linked to rail and road routes, and also express concern regarding resourcing: financial, human, and natural. But some say that the G7 could take inspiration from Charlemagne who united disparate groups through links of education, as well as land and sea. The G7’s B3W may include capital to fund areas like climate, digital technology, health security, as well as transport.

Will B3W make waves of change? “47th G7 2021 Waves Logo,” wikimedia commons.

Climate change will cause a new vision. It is certain that the world needs rebuilding: old bridges, ports, rail, and roads are in dire need of replacement, while new infrastructure could transform many places not yet linked. Some have cited the Marshall Plan as precedent to rebuilding and linking a new vision of the world. Others may see different possibilities that include contemporary concerns. As BRI and B3W consider terms of engagement and goals of success, is there an opportunity to link the world through the values of inclusion, peace, and sustainable resilience?  What is your vision of an interconnected world?

Ruta, Michele. “Three Opportunities and Three Risks of the Belt and Road Initiative.” 4 May 2018. World Bank Blog. https://blogs.worldbank.org/trade/three-opportunities-and-three-risks-belt-and-road-initiative

Sanger, Davi. E. and Mark Landler. “Biden Tries to Rally G7 Nations to Counter China’s Influence.” 12 June 2021. The New York Times. https://www.nytimes.com/2021/06/12/world/europe/biden-china-g7html?referringSource=articleShare

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

TRANSPORT: Suez Canal

Ever Given container ship stuck in the Suez Canal. What is the future of shipping? Image: wikimedia.

One ship 1,300 feet long (400 meters); 14 tug boats; 30,000 cubic meters of mud and sand cleared; 369 ships waiting in line behind the behemoth vessel: these are the elements that marked the reopening of the Suez Canal this week. When the Ever Given stopped traffic on 23 March, the Suez Canal Authority (SCA) estimated a $14 million revenue loss for each day of the blockage. Moreover, trade along the waterway that contributes 2% to Egypt’s GDP also stopped – costing $6.7 million per minute. (Russon 2021) Alianz insurer reported the Suez Canal March 2021 blockage cost between $6 billion and $10 billion.

Ever Given earlier in March in the port of Rotterdam. Image: wikimedia.

Almost everything we touch has reached us, at some stage in the supply chain, via ship. Suez averages 106 container vessels and cruise ships per day. Trends in the container shipping industry reveal continuous pressure for size increase: since 1968, container ship capacity has increased 1,200%. (World Shipping Council, 2021) Why the pressure for bigger? One reason is because shipping is twice as energy efficient as rail and seven times more than vehicle. Shipping emits 3.1% of global CO2, but that percentage could rise as other industries decarbonize. The Energy Efficiency Design Index (EEDI) is a globally-binding design standard established by the International Maritime Organisation (IMO) to reduce climate damage caused by shipping: ships built from 2020-2024 will be required to improve energy efficiency by 15-20%, and by 30% after 2025. Many of those ships will transit the Suez Canal.

Suez Canal, southern part, as viewed by Hodoyoshi satellite, 2015. Image: Axelspace Corporation, via wikimedia commons.

As container ships get bigger, canals will too. In 2015, Suez built a parallel waterway deepened by dredging one million cubic meters of sludge daily. Six companies did the work: Great Lakes Dredge and Dock Company (USA), Jan de Nul Group and Deme Group (Belgium), National Marine Dredging (UAE), Royal Boskalis Westminster and Van Oord (Netherlands). The Panama Canal, begun by Ferdinand de Lesseps but completed by the US, recently installed new locks on the Atlantic and Pacific sides that are 70 feet wider and 18 feet deeper than the originals. American ports like Baltimore, Charleston, Miami, Philadelphia, and Virginia have seen increased container traffic from the Panama expansion, according to the Supply Chain Management Program at MIT. The current US proposal “American Jobs Plan” allocates $42 billion for ports (air and sea) that may spur improvements.

Aida performed in the Arena di Verona, Italy, 2006. How can we celebrate great infrastructure in our times? Photographer: Christian Abend. Image: wikimedia commons.

Egypt’s famous waterway opened in 1869; 1.5 million people worked on the canal’s construction, evidence that infrastructure building creates jobs. Ferdinand de Lesseps, retired diplomat, visited his childhood friend now the khedive and viceroy of Egypt, in 1854 and gained concession to build the canal. Diplomacy remained a central value: the Suez contract Article VI states “tariffs of dues for passage…shall be always equal for all nations.” (Building the World, p. 193) To mark the inaugural opening of the Suez Canal, Giuseppe Verdi composed the opera Aida.  Should the “American Jobs Plan,” aimed at rebuilding infrastructure, include funding for art?

Davidson, Frank P. and Kathleen Lusk Brooke. Building the World: Great Engineering Projects in History. Volume 1, Chapter 16, “The Suez Canal,” pages 187-204. Greenwood/ABC-CLIO, 2006. ISBN: 9780313333736

DC Velocity. “Has the Panama Canal expansion changed anything?” 20 December 2018.  https://www.dcvelocity.com/articles/30335-has-the-panama-canal-expansion-changed-anything.

Edwards-May, David, and Li Denan. China’s Grand Canal: Mirror of Civilisation. Xanadu Publishing 2020. ISBN: 9781784591830.

Gooley, Toby. “Has the Panama Canal expansion changed anything?”

Inland Waterways International (IWI).  https://inlandwaterwaysinternational.org/

Navigating a Changing Climate Partnership and World Association for Waterborne Transport Infrastructure. “Mitigation: Moving towards low carbon navigation infrastructure.” @NavClimate.  https://navclimate.pianc.org

Russon, Mary-Ann. “The cost of the Suez Canal blockage.” 29 March 2021. BBC News. https://www.bbc.com/news/business-56559073

Street, Francesca. “What’s it’s really like steering the world’s biggest ships.” 29 March 2021. CNN.com. https://www.cnn.com/travel/article/steering-worlds-biggest-ships-suez-canal-cmd/index.html

Tankersley, Jim. “Biden Details $2 Trillion Plan to Rebuild Infrastructure and Reshape the Economy.” 31 March 2021. The New York Times.

Transport & Environment. “Shipping and Climate Change.” https://www.transportenvironment.org/what-we-do-/shipping-and-environment-shipping-and-climate-change

Verdi, Giuseppe. Aida. Performance by Pavarotti. LISTEN: https://www.youtube.com/watch?v=b8rsOzPzYr8

World Shipping Council. “Container Ship Design.” https://www.worldshipping.org/about-the-industry/liner-ships/container-ship-design.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

ENERGY: Genie in a Bottle

“Genie in a Bottle,” from Stripped Tour, Christina Aguilera Image: wikimedia.

February 18, 2021. It’s National Battery Day. What is this genie in a bottle that we call a battery?

Lithium-ion batteries are making news. It’s a technology popularized in 1991, when rechargeable lithium-ion batteries were first used in hand-held camcorders. A decade later, Apple began using these batteries in smartphones. When electric cars entered the market (Edison worked on one, before Henry Ford invented the gasoline-driven automobile), batteries became the way to power the future. SEMATECH introduced a new industry, and now two new semiconductor materials – gallium nitride (GaN) and silicon carbide (SIC) are now being used in EV batteries. With General Motors (GM) pledging a full transition from gas and diesel to electric vehicles by 2035 (Ford, Tesla, Volkswagen and others in similar quests), the race is on.

“Tesla Model S at a Supercharger station.” Image: wikimedia.

Who’s Who (a partial list) in Electric-Vehicle Batteries:

CATL or Contemporary Amperex Technology Col, Limited, founded in 2011 in China, announced an increased investment of $4.5 billion on 4 February 2021. CATL will open a new plant in Zhaoqing, Guangdong Province, upgrade a plant in Yibin, Sichuan Province, and expand a joint venture plant with automaker China FAW Group. A new plant in Germany is also under construction. (300750:CH)

LG Chem in South Korea, world’s biggest EV battery manufacturer, just announced its battery division would now be a stand-alone business. LG counts GM, Geely Automotive Holdings Shanghai Maple Guorun Automobile Co., Hyundai Motor Group, and Tesla among its customers. Tentative name for the new business: LG Energy Solutions. (LGCLF)

Nissan Motor Co. and American Electric Power are competitors with a different strategy: reusing old EV batteries with a technology to extend lithium-ion battery life by over 30%. The experiment uses Nissan Leaf expired-batteries with a method developed by Melbourne-based Relectrify. BMW AG and Toyota are also reusing cells in EV charging. (NSANY)

Novonix is working with Dalhousie University on battery material research, noting new deals with Tesla on synthetic graphite. (NVNXF)

Panasonic. Tesla is in talks with Indonesia to build a battery cell factory with Panasonic. (PCRFY)

QuantumScape is introducing solid-state batteries lithium-metal batteries, offering a faster charge, longer life, and increased safety. The San Jose, California company filed with the SEC for a new development on 1 February 2021. (QS)

Tesla. Bringing battery production in-house has been a goal for Elon Musk who introduced a ‘tab-less’ battery called 4680 that will produce a 16% increase in range for the company’s electric vehicles. They new cells measure 46 millimeters by 80 millimeters. (TSLA)

Zinc Copper Voltaic Pile. Image: wikimedia.

The oldest battery known to history was found in Baghdad: a clay pot containing a metal tube and rod. But when Alessandro Volta discovered that zinc and coper, placed in a saline or acid solution, could transform zinc into a negative pole and copper into a positive pole, the action began. Chevrolet named one of its early EV models a “Volt.”

Will batteries advance hydroelectric power? Image: Hoover Dam, wikimedia.

Battery storage may transform hydroelectric power In Chile, a 50 megawatt-hour (MWh) battery energy storage project (think the equivalent of 5 million iPhones) will be paired with a hydroelectric facility, to store generated energy without need to construct a dam or reservoir. Will the Hoover Dam explore this technology, with consideration to drought affecting Lake Mead? It was hydroelectric power that first fascinated Nikola Tesla who, looking at a photo of Niagara Falls, said: “Someday I’ll harness that power.”

Battery Council International. “It’s national battery day.” www.batterycouncil.org

Hareyan, Armen. “Rumor says Tesla may have completed 1st round of Indonesia battery talks involving Panasonic.” 12 February 2021. Torque News. https://www.torquenews.com/1/rumor-says-tesla-may-have-completed-1st round-indonesia-battery-talks-involving-panasonic

Hawkins, Andrew J. “Tesla announces ‘tabless’ battery cells that will improve the range of its electric cars.” 22 September 2020. The Verge. https://www.theverge.com/2020/9/22/21449238/tesla-electric-car-battery-tabless-cells-day-elon-musk

Kawakami, Takashi. “EV-battery giant CATL to boost capacity with $4.5bn investment.” 4 February 2021. NikkeiAsia.com. https://asia.nikkei.com/Business/Automobiles/EV-battery-giant-CATL-to-boost-capacity-with-4.5bn-investment

Kubik, Marek. “Adding Giant Batteries To This Hydro Project Creates A ‘Virtual Dam’ with Less Environmental Impact.” 23 May 2019. Forbes. https://www.forbes.com/sites/marekkubik/2019/05/23/adding-giant-batteries-to-this-hydro-project-creates-a-virtual-dam-with-less-environmental-impact

Schmidt, Bridie. “EV battery material firm Novonix strengthen ties with Dalhousie University.” 15 February 2021. The Driven. https://thedriven.io/2021/02/15/ev-battery-material-firm-novonix-strengthen-ties-with-dalhousie-university

Semiconductor Review. “How Semiconductor Advancements Impact EV Batteries.” 26 October 2020. Semiconductor Review. https://www.semiconductorreview.com/news/how-semiconductor-advancements-impact-ev-batteries-nwid-124.html

Stringer, David and Kyunghee Park. “Top Electric-Car Battery Maker Wins Approval for Company Split.” 30 October 2020. Bloomberg News and Transport Topics. https://www.ttnews.com/articles-top-electric-car-battery-maker-wins-approval-company-split

Stringer, David. “Companies Explore Using Old Electric Car Batteries to Cut Costs.” 24 January 2020. Transport Topics. https://www.ttnews.com/articles/companies-explore-using-old-electric-car-batteries-cut-costs

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

TRANSPORT/SPACE: Can the Internet fly?

Google/Alphabet Loon. Image: wikimedia

Wave Goodbye to Loon. The visionary project, to beam down the Internet from floating balloons, called it quits. For nine years, Google/Alphabet sent up as many as 35 floating globes – the size of tennis courts – with the goal of transmitting internet capability to areas where land-based infrastructure is not feasible. Of course, the balloons used Google autonomous navigation technology to steer themselves. But this week, the start up wound down. In 2017, when Hurricane Maria wiped out Puerto Rico’s telecommunications system, Loon helped to get the island back online. Another good outcome: Telkom, a telecommunications company in Kenya, inked a deal to bring 4G to remote areas. Because almost half the world does not yet have internet access, it’s a big market. Land-based technologies picked low-lying fruit, but there is still room for growth – above.

Starlink satellites stacked and ready to launch. Image: SpaceX and wikimedia commons.

Flying internet is a rapidly developing sector. Since early days of COMSAT, satellites are proving better vehicles for connectivity, even to what some call “notspots” (Kleinman 2021) with a vision of bringing the whole world online. It’s a movement that recalls the achievements such as the telephone and telegraph (connections were laid under the tracks of the Transcontinental Railroad). Here are some satellite enterprises delivering broadband internet today – and tomorrow:

FLYING INTERNET PROVIDERS

Apple – A plan to develop their own satellites prompted Apple to recruit two Google satellite experts: John Fenwick and Michael Trela will work with Greg Duffy, Dropcam founder who joined Apple recently. Apple may partner with Boeing to launch more than 1,00 low-orbit satellites.

Starlink –  Elon Musk’s SpaceX Starlink will require 42,000 satellites. SpaceX launched 60 satellites on 20 January 2021 to tally 1,015 so far (only 951 are still in orbit). In 2020, SpaceX carried out 14 launches. Possible subscription: $99 monthly fee + $499 for hardware.

OneWeb – Founded in 2014 by Greg Wyler, OneWeb re-emerged from potential bankruptcy with help from Bharti Global and UK government. 648 satellites will form OneWeb network constellation. Development of terminals is with Intellian Technologies and Collins Aerospace. Customers? While at first it was rural folks (OneWeb promises they won’t be overlooked), now it is telecom companies. Second generation satellites will include intelligence and security capabilities. New funding from SoftBank Group Corp and Hughes Network Systems/EchoStar tallied $1.4 billion in funding to put first-generation fleet in place in 2022.

Project Kuiper Constellation  – Funded by Jeff Bezos, Amazon’s satellite project plans to launch 3,236 satellites. In March 2019, Project Kuiper filed with the International Telecommunication Union (ITU), and Federal Communications Commission. The satellite array will orbit at three altitudes: 784 satellites at 367 miles (590 kilometers); 1,296 satellites at 379 miles (610 kilometers), and 1,156 satellites at 391 miles (630 kilometers). The plan is to provide coverage from latitude 56 degrees north to 56 degrees south – that’s where 95% of the world’s people live. (Boyle 2019)

Telesat – With priority Ka-band spectrum rights and a fifty-year history of technical prowess, Telesat Low Earth Orbit (LEO) will link to customer terminals and electronically steered antennas (ESAs) for commercial, government, and military use. The first launch happened in January 2018.

LeoSat – The vision was a constellation of 78 -108 satellites but in 2019 the company laid off its 13 employees after investors dropped support. The investors were Hispasat, Spanish satellite operator, and Sky Perfect JSat of Japan. LeoSat still exists but for now is dormant.

Viasat – This satellite system offers internet access from geosynchronous orbit. New entrants like Starlink, OneWeb, Kuiper, Telesat will use Low Earth Orbit (LEO) for lower latency and lower cost.

03b – Using medium Earth orbit (MEO), this constellation offers fiber-equivalent connection. The prime contractor is Arianespace for the operator SES Networks.

Athena Facebook filed with the Federal Communications Commission to launch Athena to provide broadband access to “unserved and underserved” areas of the world. The filing included a new name: PointView Tech LLC.

Boeing – The aerospace giant plans to launch and operate 147 satellites for a broadband constellation. Apple may help.

Satellites: a traffic jam in the sky? Can astronomers still see the stars? Image: Starlink, initial phase  – wikimedia.

PROBLEMS: Are satellite constellations the new Milky Way, or are we creating the same kind of traffic jam above that we suffer from on land? Some astronomers already report difficulty in seeing the sky. Negative comments from astronomers caused Starlink satellites to come up with a visor that prevents sun reflection, reducing glare – its a sub-company called VisorSat. OneWeb chair Sunil Bharti Mittal pledges environmental stewardship, working with astronomers on issues like reflectivity. (Amos, 2020) And then there is the problem of space debris: getting satellites up is easier than getting them down,

OPPORTUNITIES: Why are so many players entering the flying internet competition. Opportunity: Morgan Stanley projected that “the global space industry could generate revenue of $1.1 trillion or more in  2040, up from $350 billion today.” (Conroy 2019) Of that, $410 billion will come from satellite-based internet services.

GPS Constellation. Image: wikimedia

Amos, Jonathan. “OneWeb satellite company launches into new era.” 18 December 2020. BBC.com

Boyle, Alan. “Amazon to offer broadband access from orbit with 3,236-satellite ‘Project Kuiper’ Constellation.” 4 April 2019. GeekWire. https://www.geekwire.com/2019/amazon-project-kuiper-broadband-satellite/

Foust, Jeff. “SpaceX surpasses 1,000-satellite mark in latest Starlink launch.” 20 January 2021. SpaceNews.com. https://spacenews.com/spacex-surpasses-1000-satellite-mark-in-latest-starlink-launch/

Henry, Caleb. “LeoSat, absent investors, shuts down.” 13 November 2019. SpaceNews.com. https://spacenews.com/leosat-absent-investors-shuts-down/

Kleinman, Zoe. “Satellites beat balloons in race for flying internet.” 25 January 2020. BBC.com/Tech. https://www.bbc.com/news/technology-55770141

Matsakis, Louise. “Facebook Confirms It’s Working on a New Internet Satellite.” 28 July 2018. Wired. https://www.wired.com/story/facebook-confirms-its-working-on-new-internet-satellite/

OneWeb. “OneWeb Secures Investment from Softbank and Hughes Network Systems.” 15 January 2021. https://www.oneweb.world/media-center/oneweb-secures-investment-from-softbank-and-hughes-network-systems

Raymundo, Oscar. “Apple is reportedly looking to put broadband-beaming satellites into orbit.” 21 April 2017. Macworld. https://www.macworld.com/article/3191474/apple-is-reportedly-looking-to-put-broadband-beaming-satellites-into-orbit.html

Yan Huang, Michelle, Bob Hunt, David Mosher. “What Elon Musk’s 42,000 Starlink satellites could do for – and to – planet Earth.” 9 October 2020. Business Insider. https://www.businessinsider.com/how-elon-musk-42000-starlink-satellites-earth-effects-stars-2020-10

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

TRANSPORT: 5G Whiz

It all started with DARPA. Image: “Darpa – Big Data.” Wikimedia.

“Gee Whiz” is an old-fashioned phrase, first used in 1876, but the combo of astonishment + speed related to the saying may well describe 5G speed in telecommunications. In this case, the G is for generation. And whiz – it’s still about speed.

5G is fifth generation mobile technology. Back in the days of 2G, mobile phones and texting were new, 3G brought mobile broadcast data, and 4G was faster and came to be called Long Term Evolution (LTE). Now we are at the advent of 5G. Ericsson created the initial 5G platform in 2017, but it is only in 2020 that 5G is coming to market. 5G is a breakthrough because of a something called “latency.”

Will 5G advance human and other mobility? Image: wikimedia.

Latency is the time it takes for information sent to be received. While 4G seemed fast at the time, taking about 30 milliseconds from sender to receiver, 5G could travel that synapse in 1-2 milliseconds. That whiz of time is barely perceptible. Closing the gap of latency will enable leaps the “Internet of Things” (IoT) including:

Autonomous vehicles

Drone navigation

Gaming

Robotics

Will 5G allow next-generation bicycle helmets? Image: wikipedia.

Many breakthroughs in technology began with military or government research, including the Internet that stemmed from the Defense Advanced Research Projects Agency (DARPA), founded in 1958 by American President Eisenhower in response to Sputnik’s success the year prior. DARPA led to computer networking, the Internet, and graphical user interfaces – and also to the NASA lunar landing.

Now, government may again take the lead in connection. The United States Department of Defense is exploring sharing a new 5G wireless network with commercial enterprises. AT&T, T-Mobile, and Verizon are rolling out 5G upgrades, and Google’s Alphabet has advocated sharing the wireless spectrum. A shared network would keep military use, but add commercial partners. License bidding for spectrum access through a Federal Communications Commission (FCC) raised $4.6 billion recently; in December 2020, another auction will determine future power and access. While CTIA, trade association for the wireless industry, may favor private-sector decisions, some advocate sharing. Precedent may be found in FirstNet, AT&T’s $40 billion service for fire-fighters and public safety. In 2021, the Pentagon may direct 100 megahertz of spectrum towards the FCC for auction. What do you think of military and commercial interests – combined or separate?

Drones – both military and commercial – may benefit from 5G. Image “Drohnenflug im Abendrot.” Wikimedia

Meanwhile, 5G network leaders include Ericsson (ERIC) with a market capitalization of $25 billion, Nokia (NOK) with $18.5 billion, and Qualcomm, with $81 billion market capitalization. Ericsson created the first 5G platform in 2017. Huawei is among 35 global carriers active in 5G deployment. New chips will be needed: Qorvo (QRVO) and Skyworks Solutions (SWKS) are active. It will also mean new phones: Apple (AAPL) announced the 5G-capable iPhone 12 this week.

5G – fifth generation mobile network. Image: wikimedia

Speed has always driven advances in transport. Wheels were faster than walking; cars were faster than horses (we still use the term “horsepower” for speed); jets were faster than propeller-equipped aircraft. Now, a new era of connective transport is arriving, with the advent of 5G. But latency exists in more than signals; it’s also a roll-out timing factor. Full 5G capability requires new infrastructure. China, South Korea, and Switzerland made progress in 2019; in 2020, U.S. low-band is more available than mid-band or high-band, and only in some cities. By 2023, 5G may support more than 10% of the world’s mobile connections. Investors are betting on developing capacity, including chip-makers, with the next wave of significant activity from 2021-2022. Meanwhile, important policy issues regarding 5G access are in discussion: what do you think?

Carpenter, J. William. “5G Network: Top 3 Companies to Invest in Before 2021.” Investopedia. https://www.investopedia.com/articles/investing-strategy/062916/5g-network-3-companies-invest-2020-qcom-nok.asp/

DeGrasse, Martha. “Which vendor leads in 5G contracts?” 13 September 2019. Fierce Wireless. https://www.fiercewireless.com/5g/which-vendor-leads-5g-contracts

Fisher, Tim. “5G Availability Around the World.” 16 October 2020. Lifewire. https://www.lifewirecom/5g-availability-world-4156244.

Fitzgerald, Drew. “Pentagon Considers Sharing 5G Network: Private businesses would get opportunity to use spectrum without an auction.” 22 September 2020, page B6. The Wall Street Journal.

Krause, Reinhardt, “5G Stocks To Buy and Watch.” 17 September 2020. Investors.com. https://www.investors.com/news/technology/5g-stocks-5g-wireless-stocks/

McLaughlin, Ronan “%G Low Latency Requirements.” Broadband Library. https://broadbandlibrary.com/5g-low-latency-requirements/

Ranger, Steve. “What is the IoT? Everything you need to know about the Internet of Things right now.” 3 February 2020. ZDNet. https://www.zdnet.com/article/what-is-the-internet-of-things-everything-you-need-to-know-about-the-iot-right-now/

Shankland, Stephen. “How 5G aims to end network latency.” 8 December 2018. CNET.com. https://www.cnet.com/news/how-5g-aims-to-end-network-latency-response-time/.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp

CITIES/TRANSPORT: Carbon Neutral Boston

Boston is going carbon neutral. You can help. Image: “Traffic streaming through downtown Boston” by photographer Robbie Shade. Wikimedia commons.

Boston suffers some of the worst traffic in the United States. City of the ‘Big Dig’ or Central Artery Project, Boston has set the goal of becoming carbon neutral by 2050. Innovative ideas for that achievement can be discovered at the Museum of Science where students from around New England are presenting proposals and videos in Go Carbon Neutral: A Transportation Challenge. Winners will be announced on April 30. Take a look at these ideas for building a better Boston, and vote for your favorite here.

“Go Carbon Neutral.” Museum of Science. April 27-30, 2020. https://mos.org/go-carbon-neutral-2020.

Van Allen, Fox. “Cities with the worst traffic in the world.” 26 January 2020. CBSNews.com. https://www.cbsnews.com/pictures/worst-traffice-cities-in-the-world.

Appreciation to the Museum of Science, Boston, Massachusetts, USA.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unp