“SUN” by NASA, STEREO Science Center, 2010. Image: public domain.
The long, hot summer – but it’s not August, it’s not even 2021. It’s the whole 21st century. The International Panel on Climate Change (IPCC) released findings today. Here is a summary:
Climate change is widespread, rapid, and intensifying
Warming is speeding up
Every region of the world is facing climate change
Human influence is a major cause – and could be the cure (IPCC 9 August 2021)
Do we have the power to respond? Image: TVA Sign at Franklin D Roosevelt Presidential Library and Museum, Hyde Park, NY, USA. By Photographer Billy Hathorn, 2015. Image: CC0 1.0 Public Domain. Wikimedia.
It’s (almost) not too late. Can we meet the challenges? Some changes, like rising seas, may be permanent. Other results may last a century but could be eased or even reversed. There is still time to determine the future we choose (Figueres and Rivett-Carnac, 2020). Throughout history, people have responded to crisis with innovation. Energy transitions have been turning points in civilization: Tennessee Valley Authority hydroelectric power gave the world the first homes with refrigerators when the TVA opened the town of Norris. Danger led to the Manhattan Project and development of atomic energy. Geothermal, solar, wind, and wave power offer options in every region.
“Spinning Globe Map.” by Anonymous101, 2007. Image: public domain, wikimedia commons.
Regions all share climate change but conditions will vary. “For the first time, the Sixth Assessment Report provides a more detailed regional assessment of climate change, including a focus on useful information that can inform risk assessment, adaptation, and other decision-making, and a new framework that helps translate physical changes in the climate – heat, cold, rain, drought, snow, wind, coastal flooding and more – into what they mean for society and ecosystem.” (IPCC 2021) Regional information and options can be explored in detail in the newly developedInteractive Atlas here.
Microplastics in four rivers – Image. “Microplastics in freshwater ecosystems: what we know and what we need to know.” by Martin Wagner, et al., Environmental Sciences Europe. 26, 2014. doi: 10:1186/s12302-014-0012.7
Did you know that 35% of the plastic in our water is microfibers? Those microfibers come from our clothing, released into the water supply during laundering. Microfibers are too small (0.5mm) to be captured by traditional filters. Currently, 2/3rds of clothing contains some percentage of synthetic materials. A typical washload of polyester clothing may shed 9,000,000 microfibres with every wash. Now there is something we can do to stop this problem: attaching a filter to washing machines to catch the microfibers. While the origin of microfibers in clothing is the garment industry, a major source of plastic microfibers is the effluence of laundry water. PlanetCare is expanding their product to a larger version for commercial laundries.
“SEM picture of a bend in a high-surface area polyester fiber with a seven-lobed cross section” by Pschemp, 2000. Image Wikimedia.
Other companies are developing microfiber filters for washing machines. Environmental Enhancements offers the Lint LUV-R. Xeros Technologies produces the XFiltra. Filtrol makes a similar product. Cora Ball and Guppyfriend use a different technology: devices that collect microfibers inside the washing machine during the laundry cycle. While attached filters catch more fibers (87%), these tend to be the longest ones; Cora Ball inserts and Guppyfriend washing bags capture 26%, mainly the smallest fibers. Using both approaches would increase success.
Ride with Bezos? Price still unknown – the only ticket was auctioned for $28 million: for a ten minute ride, Blue Origin’s meter runs fast as a rocket. Fly with Branson? Over 600 seats on Virgin Galactic are pre-sold, going for $200, 000 to $500, 000 for a hour’s excursion. Prefer a longer stay? A space vacay to the International Space Station by Elon Musk and SpaceX: $55 million. There are other costs – environmental.
“First successful flight of the Wright Flyer: traveled 120 ft. (36.6m) in 12 seconds, on 17 December 1903. Image: Library of Congress, ppprs.00626
One way to evaluate financial, and environmental, costs of private space travel could be to look back to 17 December 1903 when the Wright Flyer took off from Kitty Hawk. In December 1944, the Convention on International Civil Aviation established rules for civil aviation: stated goals were safety and international cooperation. In 2004, the world had 900 airlines, tallying 22,000 aircraft serving 1,670 airports. (Spaceports, overseen by the Federal Aviation Administration, are now in high construction demand.) In 1960, civil aviation flew 100 million people; by 2017, 4 billion passengers. In 2019, revenues in the global aviation industry reached $838 billion. However, passenger air travel spikes the highest (and fastest) growth in individual emissions. Flight shaming (flygskam) is a resulting development. Branson and Bezos both drew criticism for spending funds on space tourism when there is a world in need below.
“A simulation of ACRIMSat (Active Cavity Radiometer Irradiance Monitor Satellite)” by NASA/JPL, 2006. Public domain.
Commercialization of space might also be examined through the development and expansion of satellites. COMSAT, the first commercial satellite operator, began with Intelsat and Inmarsat. When “Early Bird” launched in 1965, the Communications Satellite Act had just established a policy for a commercial communications satellite system open to many nations cooperatively. Comsat began with a $5 million line of credit. Sales by 1996 were $1 billion. Launching satellites produces carbon pollution, and also another kind of pollution: traffic. As of 1 August 2020, there were 2,787 satellites orbiting Earth – 1,364 of them communications satellites both government and commercial.
What can we do to reduce space emissions pollution? Image: “Space Shuttle launched with two solid-fuel boosters (SRB.” NASA, 1981, public domain.
Branson’s Virgin Atlantic, a commercial airline, ferries passengers worldwide, diluting the energy burden per seat. But Virgin Galactic carries just six, tallying a much higher per-person emissions cost; the one-hour flight is equivalent to driving a typical car around the Earth. One concern is the type of fuel used by Virgin Galactic: the system runs on a kind of synthetic fuel that burns with nitrous oxide, shooting black carbon into the stratosphere. Blue Origin uses liquid hydrogen and liquid oxygen, causing 750 times less climate-forcing magnitude than Virgin’s (Ahmed 2021). SpaceX will bring four passengers to space in September, causing the equivalent of 395 transatlantic flights worth of emissions.
“Image of depleted Ozone Layer at South Pole, Antarctica” by NASA, 2006. Image: public domain.
Space tourism projects market growth of 17% each year in the coming decade. Price-per-flight will be reduced, and innovations will increase. Just as SpaceX introduced reusable rockets, a game-changer for the space industry (landing 44 of 52 attempts), and Axiom is planning to launch its own commercial space station at the cost of $1.8 billion to NASA’s $150 billion for the International Space Station, privatization of space will streamline the industry. But because rockets emit 100 times more CO2 per passenger than flights (Marais 2021), and because rocket exhaust is released directly into the atmosphere from a higher point of entry, the ozone layer (earlier protected by the 1987 Montreal Protocol) may be again under threat.
Aviator Amelia Earhart and Purdue University President Edward C. Elliott, with Lockheed Electra, 1936. Image: public domain.
Some feel private space commercialization may be a misuse of resources more urgently needed on Earth; others predict important innovations will follow July 2021’s first commercial space tourism flights. Some of the most important developments must be in fuel options and emissions management. Will commercial space flight learn from civil aviation? Bezos’ Blue Origin space tourists brought little carry-on luggage, but two significant items hitched a ride: Amelia Earhart‘s goggles, and a piece of canvas from the Wright Flyer.
MacMartin, Douglas G. and Ben Kravitz. “Mission-driven research for stratospheric aerosol geoengineering.” 22 January 2019. Proceedings of the National Academy of Sciences of the United States of American (PNAS). https://www.pnas.org/content/116/4/1089
Ross, Martin N. and Dorin W. Toohey. 24 September 2019. “The Coming Surge of Rocket Emissions.” 24 September 2019. EOS, 100. https://doiorg/10.1029/2019EO133493
“Atmosphere Layers, showing the Kármán Line.” What’s for sale or rent? Image: based on the work of Theodore von Kármán, vectorized by NOAA and Mysid, 2014. Public domain: wikimedia commons.
When Apollo 11 placed the first people on the moon, on 20 July 1969, NASA might have known the price per person, but seats were not for sale, or rent.
On 20 July 2021, privatization of space demonstrated an aspect of commerce: market pricing, open bidding, for sale or rent. Jeff Bezos, founder of Amazon and Blue Origin, auctioned a seat on today’s ride. When the anonymous highest bidder ($28 million) backed out, citing other commitments, the place went to next-in-line Joes Daemen, CEO of Somerset Capital Partners. Daemen in turn bounced the ball to his son, Oliver Daemen, who will become the youngest person ever to go to space.
Space tourism is having a moment. On 11 July, Richard Branson flew aloft on Virgin Galactic for a view of Earth and a glimpse of space: also aboard were three Virgin staff and two crew pilots. On 20 July, Blue Origin’s New Shepard carried Jeff Bezos, brother Mark Bezos, and two other passengers: 82-year-old Mary Wallace “Wally” Funk and 18-year-old Oliver Daemen for 10 minutes of rocket tourism.
Flying to the Kármán Line (100 kilometers: 54 nautical miles/62 miles above Earth, the point considered to be the beginning of space) is not cheap, but prices vary. What’s the cost per passenger for space tourism? Yet unknown. Bezos is funding Blue Origin, founded in 2000, with share sales of Amazon stock, selling 1.85 billion worth of shares in May 2021. Bezos donated the $28 million auction proceeds to a charitable outreach: Club for the Future. Branson filed to sell $500 million in Virgin Galactic shares after the July flight, sparking a brief halt in the stock’s trading. Virgin Galactic currently has 600 reservations for space tourism flights: pricing ranges from $200,000 to $400,000, depending upon date of purchase. To date. Blue Origin has sold seats by auction: scheduled pricing is to follow. SpaceX, founded by Elon Murk, will also carry paying passengers: three people paid $55 million each for a 10-day tour to the International Space Station.
There are some who question the ethical and environmental costs of private space. Should billionaires like Bezos, Branson, and Musk spend their money flying to space or solving problems on Earth? What about the emissions of space vehicles carrying not scientific experiments but joy-riding millionaires?
Others point out that innovation often starts with entrepreneurial investment. Early in the 20th century, in 1903, the Wright brothers flew at Kitty Hawk. In 2003, air transport generated 13.5 million jobs and significant contributions to GDP around the world. What innovations might we see from space tourism in this century? How will Virgin Galactic, SpaceX, and Blue Origin influence development in space? Watch Blue Origin’s voyage here.
In the next post, we’ll take a closer look at the costs of private space: environmental and financial.
Klueger, Jeffrey. “Wally Funk Is Going to Space Aboard Jeff Bezos’s Rocket. Here’s Why That Matters: A flight 60 years in the making.” 18 July 2021. TIME magazine. https://time.com/6080695/wally-funk-space-bezos/
“White Knight Two and SpaceShip Two from directly below.” by Jeff Foust, 22 October 2010. Image: Wikimedia Commons 2.0 Attribution. Thank you to Jeff Foust.
Space, once the faraway realm of governments and agencies like NASA that sent the first team to walk upon the moon, has now officially gone private. On 11 July, founder of Virgin Airways and Virgin Galactic, Richard Branson became the first individual to go to outer space in a vehicle the entrepreneur helped to fund. Branson, Sirisha Banda, Colin Bennett, and Beth Moses took off from Truth or Consequences (a town renamed for a game show) New Mexico, USA, on SpaceShipTwo, a dual-winged plane with a single rocket called WhiteKnight Two. Pilots, also aboard, released the rocket and the passengers zoomed upward with three Gs of force. When the spacecraft reached 50 miles high (the official definition of outer space), SpaceShipTwo rolled over onto its belly where windows allowed the passengers to see space – and Earth. It was just this view that occasioned the 1987 World Commission on Environment and Development report: “Our Common Future.” What is the shared future of public and private space?
Illustration: “SpaceX Crew Dragon approaches International Space Station for docking.” by Nasa/SpaceX, 26 July 2018. Image: Creative Commons 2.0 Attribution. Thanks to Nasa/SpaceX.
Richard Branson, Jeff Bezos, Elon Musk represent a new kind of space: private space. Branson’s Virgin Galactic was first with tourism. SpaceX, founded by entrepreneur Elon Musk, regularly goes to the International Space Station. Asteroid exploration and mining advances are progressing with Planetary Resources, Inc – note the suffix. Blue Origin, founded by Jeff Bezos of Amazon fame, will be next, when Bezos launches into space for a day-trip with his brother Mark, and a mystery passenger who outbid 7,600 competitors with the sum of $28 million for the ride scheduled for 20 July – anniversary of the Apollo 11 lunar landing. (Bezos is turning the sum into a donation – more on that in the next post in this series.)
“Buzz Aldrin on the moon with Neil Armstrong seen in the helmet’s reflection.” 21 July 1969. Credit: Nasa.gov and wikimedia commons 9/98/Aldrin_Apollo_ll_original.jpg.
Neil Armstrong and Buzz Aldrin set foot upon the moon on 20 July 1969, shortly after the the Outer Space Treaty, had been signed in 1967. The Outer Space Treaty assumed, at the time, that only governments would or even could have the expertise – not to mention the funds – to develop the orbital frontier. The Center for Air & Space Law at the University of Mississippi School of Law observes that space laws and treaties did not anticipate privatization of space travel. How can public and private space share a common future? What should be added to the Outer Space Treaty?
“Statue of Liberty” by Tysto (Derek Jensen), 2005. Image is in the public domain, from wikimedia commons.
On Independence Day, France will give a gift of diplomacy to the United States, celebrating the shared value of liberty. France’s national motto “Liberté, Égalité, Fraternité” (Liberty, Equality, Fraternity), and the American holiday of independence, will join sentiments as a replica of the Statue of Liberty is presented by the Museum of Arts and Crafts in Paris for a ten-year visit to the land of her big sister. “Little Lady Liberty” (9.3 feet or 2.8 meters) joins the original Statue of Liberty (305 feet or 93 meters) that was a gift from France to the United States in 1886.
“The Eiffel Tower – State of the Construction.” Photograph by Louis-Emile Durandelle. public domain. Image: wikimedia.
“Empire State Building in Rainbow Colors for Pride.” Photographer Anthony Quintano. 28 June 2015. Image: wikimedia commons
Cities have an opportunity to inspire and unite urban denizens in shared values. As Toynbee demonstrated in Cities of Destiny, the metropolis can create a unique cultural climate. Many urban centers possess iconic monuments, like the Eiffel Tower in Paris, that may serve as cultural billboards. As the world gathered in Paris for COP21 in 2015, that landmark beamed the message: “1.5” – indicating a shared goal of limiting global warming to that level. Other issues like social justice have illuminated city monuments: San Francisco’s City Hall has often been displayed in rainbow colors.
“City Hall, San Francisco, California, USA.” Photographer Torrenegra. Image: wikimedia
London, England, has many landmarks including the fabled London Bridge and the recent addition to the cityscape: the London Eye. This month, the “Eye,” formally termed the Millennium Wheel when it opened in 2000, displayed rainbow colors to honor Pride, commemorating the 1969 Stonewall turning point for LGBT+ rights.
White House with LGBT+ Rainbow Colors. Image: wikimedia commons.
In June of 2015 when the United States Supreme Court ruled (Obergefell v. Hodges) two people of same sex have the right to marry, the White House celebrated by illuminating the iconic Washington D.C. building in the colors of the rainbow. As we strive to build an equal and sustainable future – environmentally and socially – how can cities Troop the Color?
The history of civilization may be measured by connection. First it was the Silk Road that connected cities; then it was the age of ships that created ports from Singapore to Suez. Canals threaded connection through waterways, making one route from inland to sea: the Grand Canal, Canal des Deux Mers, Erie, Panama. Rail linked continents: the Trans-Continental, Canadian Pacific, and the Trans-Siberian united people across vast spans. But each of these achievements was a separate project.
“Belt and Road Initiative.” graphic design by Mathildem 16, 2020. Image: wikimedia.
BRI or B3W? Now, there are two plans to connect the world in a more comprehensive way: the “Belt and Road Initiative” (BRI) announced and begun in 2013 by China, and the “Build Back Better for the World” (B3W) proposed by the G7 in 2021. China is ahead: more than 100 countries have signed BRI agreements. Some comment that the BRI is able to move quickly from plan to construction of new ports linked to rail and road routes, and also express concern regarding resourcing: financial, human, and natural. But some say that the G7 could take inspiration from Charlemagne who united disparate groups through links of education, as well as land and sea. The G7’s B3W may include capital to fund areas like climate, digital technology, health security, as well as transport.
Will B3W make waves of change? “47th G7 2021 Waves Logo,” wikimedia commons.
Climate change will cause a new vision. It is certain that the world needs rebuilding: old bridges, ports, rail, and roads are in dire need of replacement, while new infrastructure could transform many places not yet linked. Some have cited the Marshall Plan as precedent to rebuilding and linking a new vision of the world. Others may see different possibilities that include contemporary concerns. As BRI and B3W consider terms of engagement and goals of success, is there an opportunity to link the world through the values of inclusion, peace, and sustainable resilience? What is your vision of an interconnected world?
“Arctic National Wildlife Refuge.” Photograph by Steven Chase, US Fish and Wildlife Service. Image: wikimedia commons.
US Arctic National Wildlife Refuge will keep its mission as a refuge, at least for now. Leases to drill for gas and oil have been suspended, pending review. This follows cancellation of the Keystone XL pipeline, on 20 January 2021. When the Alaska Highway was built, and later the Trans-Alaska pipeline, it was a matter of war and then of preservation of another kind. But the Arctic National Wildlife Refuge (ANWR) covers 19.6 million acres including the Mollie Beattie Wilderness. It is the second largest wilderness area in the US, and contains 1 million acres of coastal plains. Coasts are attractive as access points for ships and drilling operations. But coasts are also critical for habitat, and already of concern for rising seas.
“Arctic National Wildlife Refuge.” Image: wikimedia commons.
Mollie Beattie, conservationist and former director of the United States Fish and Wildlife Service (the first woman to head the agency), once said: In the long term, the economy and the environment are the same thing. If it’s un-environmental, it is un-economical. That is the rule of nature.
“Riding dragon gods” illustration from Myths and Legends of China by E.T.C. Werner, 1922. Image Project Gutenberg.
Not only is the sky getting crowded with satellites, some working and others defunct but still orbiting, the planets are seeing traffic. This weekend, China landed on Mars, after arriving in orbit on 10 February. China’s Tianwen-1 mission features an orbiter, lander, and rover named Zhurong (Chinese god of fire). Watch the landing here.
“Diagrama of the Perseverance Rover with Instruments.” NASA. 17 June 2020. Image: nasa.gov/wikimedia.
Red Planet traffic includes: NASA’s rovers Curiosity and Perseverance. (Preceded by Spirit and Opportunity in 2004). Decades ago, NASA’s Viking 2 lander touched down on Utopia Planitia, a basin thousands of miles wide in the northern area of Mars. That’s the same place China landed this weekend. Scientists hypothesize that Utopia Planitia may have once been an ocean, so it’s a good site to look for signs of life. In fact, water may still be there – under the surface. NASA’s Reconnaissance orbiter detected ice there in 2016; there may be as much ice as Lake Superior. That’s good news for a number of reasons including potential for agriculture, habitation, and power. Besides China and the USA, other contributors to the study of Mars include Argentina, Austria, the European Space Agency (ESA), and France. Also in the Martian traffic pattern: Hope, an orbiter sent by the United Arab Emirates, arrived in the neighborhood on 8 May and is observing atmosphere and weather, recently releasing images of hydrogen atoms around Mars on 24 and 25 April 2021.
“Animation of Emirates’ Mission around Mars.” Image: wikimedia.
Will traffic on Mars continue to increase? Only every two years. There is a timing window when Earth and Mars are closest, and that is why there is so much activity now. While most traffic is on land, NASA’s Ingenuity, a helicopter, has been logging flight time in the Martian atmosphere – the first time (that we know of…) anyone has flown on the Red Planet.
Goswami, Namrata and Peter A. Garretson. Scramble for the Skies: The Great Power Competition to Control the Resources of Outer Space. 2020: Lexington Books. ISBN: 978498583114 and 9781498583121.