Nikola Telsa was there first; Peter Glaser, next. Telsa was sending wireless power from Niagara Falls; Glaser, from space to earth. Now, technology might free your mobile phone from battery recharging when you are in a wi-fi zone. And the walls of your office or school could tell a tale or two.
It’s more than just a personal device. The rectenna converts AC electromagnetic waves into DC electricity. New MIT-designed rectennae could stretch across highways or bridges, making it possible to report all manner of developments while recharging an array of options. The technology, developed by Professor Tomás Palacios of MIT/MTL Center for Graphene Devices and 2D Systems in the Microsystems Technology Laboratories (MIT-CG), might extend the internet of things. Partners in the project include Technical University of Madrid, Boston University, and other institutions and research labs.
Another application? A medical device you may happen to wear like an insulin pump, watchman, or pacemaker, or even a diagnostic “pill or capsule” that patients swallow to circulate internally and report data. Such pills cannot be powered by batteries lest lithium might leak toxins. Developments at MIT’s Medical Electronic Device Realization Center (MEDRC) may advance the information-driven healthcare sector.
Where did the miniaturization trend begin? Many trace miniaturization communications technology to the early days of the US Apollo space mission; the capability proved to have uses on earth, too.
At the beach? Visit the coffee kiosk where wifi might charge your phone. Even whole cities are going live: Philadelphia declared it would be the first municipal wifi network in 2004: the vision is still to be completed. Offices have wifi; so do airports, hospital lobbies, schools. It’s a two-way proposition: charging and also data-collecting. Now, wi-fi harvesting devices could give new meaning to the phrase: “If walls could talk.”
Glaser, Peter. “Method and Apparatus for Converting Solar Radiation to Electrical Power.” US Patent 3,781,647. 1973.
We hear so much about reducing carbon dioxide (and other greenhouse gases) in the atmosphere, it may sound like we are aiming to clear the Earth of carbon. But carbon is the basis of life. Carbon compounds make up 18% of the human body, found in every cell, forming the building blocks of proteins. Plants are also 18% carbon.
We don’t need, or want, to eliminate carbon. Rather we need to restore and renew its proper balance. Carbon is a cycle. It moves from land to water to sky. In the sky, it combines with oxygen to form carbon dioxide. Carbon dioxide is also water soluble, so it is found in lakes and rivers; in the ocean, too much creates acidification, but a smaller amount is natural. When there is too much in the atmosphere, carbon dioxide (and other greenhouse gases like methane that degrades into carbon dioxide) form a kind of blanket causing global warming. Some amount of carbon in the atmosphere, and the ocean, is not only normal but desirable, part of the great circular journey of carbon that nourishes and vivifies the planet.
But how much is carbon is enough, and not too much? Before the Industrial Revolution when we started burning coal, then oil and gas, atmospheric carbon dioxide was 0.028% or 280 ppm. Right now, it’s more than 425 ppm – and growing. So, we don’t have to remove every last bit of carbon, or carbon dioxide. We just have to return from 425 (or so) of atmospheric carbon dioxide to 280.
Cessation of carbon-based (fossil) fuels, transitioning to non-carbon renewable energy, is the first step. Reforestation will help: will programs like the National Trails and Parks support public health? Restoring peatlands and wetlands may contribute: will the Netherlands lead the way? Regenerative agriculture will improve soil and atmosphere. Eventually, excess carbon dioxide in ocean and atmosphere will find its way back to the land, restoring balance. We’ll surely need to pursue both avoidance (not burning carbon-based fuels) and perhaps removal. Nature-based carbon removal systems like forests can remove 15.6 billion metric tonnes of carbon annually. Seaweed can help to remove carbon from oceans. Mineralization and biochar can return, and sequester, carbon in earth. Some say we will need assists like geo-engineering, but we’re not there…yet.
We are now at 425ppm. It may not be too late to return to 280 ppm, renewing the Earth. Seeing carbon as part of a cycle may help.
The International Seabed Authority (ISA) finance committee begins this week to build upon legal and technical committee recommendations regarding whether to allow robotic bulldozers to rip up the deep seabed in search of minerals and metals to power renewable energy needed to stop climate change.
It is more than ironic to mine the deep seabed to stop climate change. It could be irreparably tragic. But there is still time.
World Bank and International Energy Agency estimate a 500% increase in demand for battery metals and minerals like cobalt by 2050. Now, cobalt is mined on land, with some concerns about environmental damage. Is deep seabed better? Do we really need to deploy explosives and bulldozers to blast open seamounts and crusts for cobalt, manganese, nickel, titanium? Not only will such invasive actions damage the direct area, but ocean currents certainly will carry the effects further.
The deep seabed’s seamounts and crusts – the same environments where minerals are formed – are habitats of corals, crabs, fish, sea stars, and marine seagrasses of more than 70 species. Recently, the UK’s National Oceanography Centre’s Seabed Mining and Resilience To Experimental Impact (SMARTEX) explored the Clarion-Clipperton Zone (CCZ) between Hawaii and Mexico, finding new lifeforms including a sponge with the longest-known lifespan on Earth – 15,000 years. The CCZ is home to vast marine life, including 5,578 species – 88% of which are newly discovered and not even named. The CCZ’s polymetallic nodules contain more key metals than the entire world’s land-based reserves, making it prime prospecting territory. But is it necessary? Do we really need deep seabed mining for minerals like cobalt?
Cobalt is recyclable and reusable. So is nickel. Companies and governments that use such minerals find it easier to obtain “virgin” mineral resources than to engage in recycling. European Commission currently proposes negating Directive 2006/66/EC and upgrading Regulation (EU) No 2019/1020 to require more recycling. Cobalt and copper are largely recycled but most minerals and metals have recycling rates under 34%; some just 1%.
The International Seabed Authority (ISA) issues and approves contracts for exploration of the deep seabed beyond national territories. ISA has the power to grant exploitation – mining. Recent actions by member nation Nauru triggered an acceleration that may lead to exploitation contracts as soon as this summer. Right now, ISA’s future leadership is about to be decided in a coming election. It is a critical time. The marine environment needs your support now.
Like outer space, the deep seabed belongs to everyone on Earth. The Clarion-Clipperton Zone (outside of national jurisdiction of coastal abutters) belongs to you. Will you join Sir David Attenborough and other scientists to call for the International Seabed Authority to enact a moratorium on exploitation contracts for seabed mining? Sign the petition here.
Brooke, K. Lusk. “Buried Treasure and Speedo Diplomacy.” Renewing the World: Casebook for Leadership in Water (2024) Case #6: pages 55-66. ISBN: 979-8-9850359-5-7. https://renewingtheworld.com
European Commission. “European Commission Proposal for a Regulation of the European Parliament and of the Council concerning batteries and waste batteries, repealing Directive 2006/66/EC and amending Regulation (EU) No 2019/1020.
June 8 is World Oceans Day, launched in 2016 by its Youth Advisory Council, and supporting this year’s 2024 theme: “Catalyzing Action for Our Ocean & Climate” highlighting the message of one ocean, one climate, one future – together.” Here are three ways you can participate:
Protect the High Seas – did you know that not every country has ratified the High Seas Treaty? Areas beyond national jurisdiction belong to the whole world – including you. If your country has yet to act, contact leaders to urge signing now. Related to the High Seas Treaty is the initiative to protect 30% of ocean habitat by 2030. Check who’s on board here.
Defend the Deep – ironically, signatories of the United Nations Convention on the Law of the Sea (UNCLOS) are also those who may apply to the International Seabed Authority for contracts permitting deep seabed mining. This summer, decisions will be made regarding mining the seabed for minerals like cobalt. The argument for is that renewable energy requires battery storage powered by these minerals, now becoming depleted on land but abundant in the deep seabed. The argument against is that mining the deep seabed will surely be environmentally dangerous and very difficult to remediate. According to studies verified by Sir David Attenborough and hundreds of scientists, metals and minerals like cobalt are 100% recyclable. We do not need to mine the sea to power the future. Voice your opinion here.
Support the Global Plastics Treaty – how many times have you spotted plastic litter on a beach, or seen a photo of the tragic consequences of plastic for marine life? In Nairobi, the UN Environment Assembly agreed to an international legally binding agreement to address the plastic production cycle from design to disposal. Support the world’s development of a global plastics treaty here.
Celebrate and share World Oceans Day. A social media toolkit to help you and your community share the message is available here.
Brooke, K. Lusk. “Speedo Diplomacy – Deep Seabed Mining and Marine Preservation.” Pages 56 – 67.” Renewing the World: Casebook for Leadership in Water. ISBN: 979-8-9850359-5-7. https://renewingtheworld.com
February 1 opens, for many cultures, that time when, from cold and snow, ice and chill, dark and still, springs life.
Charles Darwin wrote, on 1 February 1871:
“It is often said that all the conditions for the first production of a living organism are now present, which could ever have been present. But if (and oh what a big if) we could conceive in some warm little pond with all sorts of ammonia and phosphoric salts – light, heat, electricity &c. present, that a protein compound was chemically formed, ready to undergo still more complex changes, at the present day such matter wd be instantly devoured, or absorbed, which would not have been the case before living creatures formed.”
Letter of Charles Darwin to Joseph D. Hooker, 1 February 1871.
It was an idea whose time had come: spring – and the springing of life – was in the air. In the 1920’s, two scientists – not yet knowing the other’s work because they published in different languages not immediately translated – came up with a theory of the origin of life energy.
Alexander Ivanovich Oparin heard from scientific colleagues that methane had been detected in the atmosphere of Jupiter. That set Oparin to musing: did ancient Earth have an atmosphere that also contained methane, probably along with hydrogen maybe in the form of water vapor, and also ammonia. If so, these components could have formed what we think of as life. Oparin’s hypothesis was published in 1924 in Russian, in a little pamphlet “Proiskhozhdenie Zhizny” or “The Origin of Life” but not translated into English until 1936 or some say 1939, in either case years after Haldane had the same idea.
Meanwhile, John Burdon Sanderson Haldane (usually referred to as J.B. S. and who called himself Jack as a nickname) came up with the same, or very similar, idea. Haldane’s article of eight pages entitled “The Origin of Life” appeared in 1929 in The Rationalist Annual. Haldane suggested that the ancient atmosphere of Earth contained ammonia, water, and carbon dioxide, and would have been bombarded with ultraviolet rays from the sun that would alternate, day and night, inducing reactions through the constant alternation. When Haldane learned of Oparin’s hypothesis, he graciously commented that of course Oparin came first.
While very similar – hypothesizing a number of chemicals that would be impacted a repeating mechanism – Oparin and Haldane had slight differences in both of those parts: chemicals and mechanism. Their chemicals were referred to as “The Primordial Soup.”
Chemicals – the primordial soup. Oparin’s chemicals were ammonia, methane, hydrogen, and water vapor. Haldane’s chemicals were ammonia, carbon dioxide, and water vapor. Therefore, each had a carbon source: methane (Oparin) and carbon dioxide (Haldane). These chemicals formed a “primordial soup.” But what stirred the soup to life?
Mechanism -But something had to stir the primordial soup. Oparin hypothesized lightning. Haldane hypothesized ultraviolet light.
Result?
When the mechanism stirred the soup, over and over again, molecules bumped into each other and eventually that friction formed them into combinations or building blocks – like amino acids. From there, complexity continued to increase. In scientific circles, the theory became known as “Oparin-Haldane” hypothesis, so despite Haldane’s graciousness, they both went into history as simultaneous discoverers and formulators of an intriguing hypothesis.
Still, it remained just a hypothesis – intriguing but yet unproven. In the next episode, we’ll see if Oparin, Haldane, and Darwin were right about the Big IF.
Forsythe, Jay G., et al., “Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.” 15 July 2015. Angewandte Chemie, Volume 127, Issue 34, pages 10009-10013. https://onlinelibrary.wiley.com/doi/10.1002/ange.201503792
As we transition from coal, what will happen to those old mines? Two approaches are worth considering. One is a necessary expense; the other is a new kind of gold mine.
Days of the California Gold Rush (1848-1865) began an era of intense and often unregulated mining. In a frenzy of attack, 370 tons of gold worth (in today’s value) $16 billion were unearthed. In the United States, the 1872 General Mining Act regulated gold mines opened up by the Gold Rush, as well mines for extracting substances including lithium – needed today for batteries powering electric vehicles. Current competition for lithium mining rights is active across the United States, and the world. But what happens afterwards?
When a mine is depleted, it is often abandoned. In the U.S., there are 390,000 abandoned mines on federal land. More than 67,000 present physical dangers; 22,000 pose environmental risks. Mines seep metals and toxic materials into streams and rivers, polluting drinking water for humans and wildlife. Moreover, mines on sovereign land of original Native Indigenous Americans are insufficiently protected. From 2008 to 2017, the U.S. spent $2.9 billion addressing mining problems. Could cleaning up old mines become profitable? There is precedent. The Abandoned Mine Land Fund, instituted in 1977 as a mandate for the coal industry to clean up abandoned mines and upgraded by an addition proposed by Representative Liz Cheney, yielded not only improved environmental and health benefits but fees for future use; by 2020, more than $11 billion poured into the fund. What should we do with the money? Is there an incentive leading to opportunity?
Coal-fired plants are essential for the future: not for coal, but for their existing infrastructure. Coal-fired plants are wired to the grid. Getting permit permissions is a lengthy process; building grid connectivity infrastructure is expensive. Using existing wired infrastructure may be one answer. In the United States, former coal-fired plants are now being repurposed as battery, solar, and wind facilities. Colorado, Illinois, Maryland, Minnesota, Nebraska, New Mexico, Nevada, and North Dakota are among states phasing out coal while turning plants into renewable energy centers. In Massachusetts and New Jersey, seaside coal plants already wired to the grid are now being connected to offshore wind energy. Worldwide, there are 8,000 coal-fired power plants: China has 1,000; India has 285; the USA has 240. All of those are candidates for energy reuse and revitalization.
Mining is an ancient practice but its environmental safeguards need an upgrade, both in the United States and worldwide. New mines for lithium and other materials may develop. Coal mines will close but can serve a new goal. How can owners of coal-fired plants benefit from this opportunity? Repurposing coal-fired plants – already wired to the grid – to support renewable energy could turn what is now a liability into a new kind of gold mine.
Brooke, K. Lusk. “Phoenix Rising: The future of coal-fired plants and coal mining.” Renewing the World: Energy. Forthcoming. For related information, https://renewingtheworld.com
Lawrence Berkeley National Laboratory. “Queued up: Characteristics of power plants seeking transmission interconnection.” 2021. https://emp.lbl.gob/queues
As the world transitions from fossil fuels, some say the change of direction was caused by an oil spill. April 22 is celebrated around the world as Earth Day. Begun in 1970, Earth Day was proposed by Senator Gaylord Nelson (Wisconsin) when the senator was among those who witnessed a damaging oil spill in Santa Barbara, California. Nelson reached out to leaders of the future – students – and across the political aisle to Congress leader Pete McCloskey, as well as to student activist Denis Hayes (who later became president of the Bullitt Foundation). Together, the three proposed a day for a teach-in about the environment. April 22 was chosen because it was between Spring Break and Graduation. Hayes recruited a team of 85 who recommended that April 22 receive a special name: Earth Day.
That first Earth Day was so successful that many trace the birth of the environmental movement to the raised awareness. Another factor: NASA landing people on the moon the year before, in 1969, giving everyone on the planet a sense of Earth’s community.
1970 became a turning point. The Environmental Protection Agency was created, and new legislation passed: Environmental Education Act, Occupational Safety and Health Act (OSHA), and the Clear Air Act. 1972: the Clean Water Act. 1973: Endangered Species Act (co-authored by Pete McCloskey, who also worked with Climate One ), and that same year, the Federal Insecticide, Fungicide, and Rodenticide Act.
What began in the United States soon went global, as befits Earth Day. In 1990, Earth Day reached 141 countries, raising a movement that led to the United Nations Earth Summit in Rio de Janeiro in 1992. Now, Earth Day is honored by 193 countries. As Earth Day notes, it is the “largest secular observance in the world.” (earthday.org)
Are you ready to help? There are many ways you can participate in Earth Day’s TAKE ACTION NOW
GLOBAL TREATY TO END PLASTIC POLLUTION: This week, 175 UN Member States are meeting in Nairobi to decide upon a legally binding treaty to end plastic pollution. “Ambitious action to beat plastic pollution should track the lifespan of plastic products – from source to sea – should be legally binding, accompanied by support to developing countries, backed by financing mechanism tracked by strong monitoring mechanisms, and incentivizing all stakeholders – including the private sector,” states Inger Andersen, Executive Director of the UN Environment Programme (UNEP 2022).
BUSINESS CAN LEAD THE WAY: While governments can agree, it is business and industry that will make the difference. Procter & Gamble Company (P&G) announced the switch to reusable and refillable packaging. Some of the brands may be familiar to you: Crest, Cascade, Gillette, Pampers, Pantene, and Tide all plan new packaging. Partnering with TerraCycle’s Loop program, P&G’s Ambition 2030 campaign will aim for a circular manufacturing process with as little plastic as possible. Some products like Pampers will come with a bin: when it is full, just text a pick-up service that will take your waste for repurposing and drop off a new container. TerraCycle partners with UPS helped to design packaging, with an eye to the role of transportation as “an enabler for circularity. UPS’ director for global sustainability believes “Loop is the signal for the future.” For more brand innovations, click here.
TRASH OR TREASURE? Most plastic packaging is used only once. Only 14% of plastic collected is recycled. But it’s more than just trash – it’s valuable. Yet, 95% of that value – mainly of plastic packaging material – is lost to the economy. It is worth $100 billion – annually. (Ellen MacArthur Foundation 2022).
PLASTIC OF THE FUTURE – Here are some ways to end plastic pollution:
Innovate so all plastics we do need are reusable, recyclable, or compostable
Ensure future plastics are free from hazardous chemicals
Ivanova, Maria. Moderator: “Looking Back: 50 Years of the UN Environment Programme.” 4 March 2022.UNEP and Center for Governance & Sustainability, University of Massachusetts Boston. https://www.environmentalgovernance.org/unepdialogue
Did you know the largest biological migration on Earth takes place – every night? It is called Diel Vertical Migration (DVM). This week, as the United Nations 76th General Assembly convened, leaders of over 100 nations attended in person. Speakers included presidents and policy-makers who addressed 12 commitments. But this year, there was additional representation: Nature. The message is one of growing awareness of the Rights of Nature. From the 1962 General Assembly Resolution 1803 (XVII) on “Permanent Sovereignty over Natural Resources” and the 1982 “World Charter for Nature” to the recognition of personhood rights of the Whanganui River of New Zealand in 2017, the rights of nature will grow in importance during climate change.
DVM acts as a biological pump, renewing oceans and lakes, in ways essential to the marine environment. Organisms move up to the top at night, and return to the bottom by day. Crustaceans commute; so do trout. In the process, conversion of C02, and inorganic nutrients, transfer zones. This cleansing and renewing system is one of the treasures of the marine cycle. By bringing attention to vertical migration, the United Nations may set the stage for COP 26 in Glasgow, November 2021, where environmental issues will be decided. Displayed on the night-cloaked facade of the United Nations iconic building, the film “Vertical Migration” brought awareness to the largest migration our world knows, and the importance of marine life in a sustainable, balanced future.View “Vertical Migration.”