Intersecting Processes

complexity & change in environment, biomedicine & society

The relationship between interpretation in/of science and change

| 0 comments

‘Gessen’s genetic counselors recommended an oophorectomy.  But Gessen balked…

Our culture doesn’t yet have the infrastructure to handle the consequences of the recent revolution in genetic testing.  But we’ll need it…’

Review of Gessen (2008), Blood Matters, in International Herald Tribune

10-11 May 2008.

*

In 1845 the young Karl Marx proclaimed that the ‘philosophers have only interpreted the world, in various ways; the point, however, is to change it.’  But what mode of interpretation should guide people in effecting change?  That’s no simple matter. Marx himself spent the following forty years of his life elaborating his interpretation of historical and ongoing social transformations.

In 1865 Francis Galton, sought to promote social progress by interpreting patterns in data drawn from human relatives.  As Galton proclaimed early in his forty years of research:

If a twentieth part of the cost and pains were spent in measures for the improvement of the human race that are spent in the improvement of the breed of horses and cattle, what a galaxy of genius might we not create! …Men and women of the present day are, to those we might hope to bring into existence, what the pariah dogs of the streets of an Eastern town are to our own highly-bred varieties (Galton 1865, 165-6).

Fast forward to 2008.  Genomics entrepeneur, Craig Venter, and science communicator, Richard Dawkins, converse about change that flows, almost without interpretation, from information about organisms’ genes:

Venter: [W]e isolated the chromosome from one bacterial species and transplanted it into another one. The chromosome in the species that we transplanted into was destroyed, and all the characteristics of one species went away and got transformed into what was dictated by the new chromosome… This was a precursor to being able to now design life… And we have major problems we’re trying to overcome by looking for solutions, changes in modern society.

Dawkins: It’s more than just saying that you can pick up a chromosome and put it in somewhere else. It is pure information. You could put it into a printed book. You could send it over the Internet. You could store it on a magnetic disk for 1,000 years, and then in a thousand years time, with the technology that they’ll have then, it will be possible to reconstruct whatever living organism was here now. So, this is something which was utterly undreamed of before the molecular information revolution… This is a major revolution. I suppose it’s probably ‘the’ major revolution in the whole history of our understanding of ourselves (Venter and Dawkins 2008).

*

This essay addresses the relationship of interpretation to change, at two levels.  One level concerns the revolutionary claims of molecular biology and biotechnology about using genetic information, read literally or with a minimum of interpretation (construing the term broadly), to reshape human life.  The other level, less grand in ambition, concerns the relationship in social studies of science and technology (STS) between interpreting projects in the life sciences and influencing their direction.  Claims like those of Venter and Dawkins are fantasies, they involve worlds envisaged and mentally inhabited so as to escape the practical difficulties of action (Robinson 1984).  In the material world many diverse materials, tools, and other people have to be engaged to realize any enduring result.  Social infrastructure has to be built if human life is to be reshaped.  This perspective matches interpretations in STS that emphasize the heterogeneous engineering or construction involved in establishing knowledge and making technologies reliable (Latour 1987; Law 1987; Clarke and Fujimura 1992, 4-5; Taylor 2005, 93ff).  However, two shortcomings in such interpretations concern me:  More self-conscious attention is needed to how such interpretations are intended to influence change in science or technology and in society.  In particular, more development is is needed in the conceptualisation of the structure of the social context of scientific and technological developments and of human agency in the ongoing restructuring of that context….

=Opening excerpt from “Infrastructure and Scaffolding: Interpretation and Change of Research Involving Human Genetic Information,” Science as Culture, 18(4):435-459, 2009

References

Clarke, A. and J. Fujimura (1992). What tools? Which jobs? Why right? The Right Tools for the Job:  At Work in Twentieth-century Life Sciences. A. Clarke and J. Fujimura. (Princeton: Princeton University Press), 3-44

Galton, F. (1865). Hereditary talent and character. Macmillan’s Magazine 12: 157-66, 318-327

Latour, B. (1987). Science in Action:  How to Follow Scientists and Engineers through Society. (Milton Keynes: Open University Press).

Law, J. (1987). Technology and heterogeneous engineering: The case of Portugese expansion. The Social Construction of Technological Systems: New Directions in the Sociology and History of Technology. W. E. Bijker, T. P. Hughes and T. J. Pinch. (Cambridge, MA: MIT Press), 111-134

Robinson, S. (1984). The art of the possible. Radical Science Journal 15: 122-148

Taylor, P. J. (2005). Unruly Complexity: Ecology, Interpretation, Engagement. (Chicago: University of Chicago Press).

Venter, C. and R. Dawkins (2008). Life: A Gene-Centric View—A Conversation in Munich. Edge 235

Leave a Reply

Required fields are marked *.


Skip to toolbar