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Abstract

Learning has been studied extensively in the context of isolated individuals. However, many organisms are social and
consequently make decisions both individually and as part of a collective. Reaching consensus necessarily means that a
single option is chosen by the group, even when there are dissenting opinions. This decision-making process decouples the
otherwise direct relationship between animals’ preferences and their experiences (the outcomes of decisions). Instead,
because an individual’s learned preferences influence what others experience, and therefore learn about, collective
decisions couple the learning processes between social organisms. This introduces a new, and previously unexplored,
dynamical relationship between preference, action, experience and learning. Here we model collective learning within
animal groups that make consensus decisions. We reveal how learning as part of a collective results in behavior that is
fundamentally different from that learned in isolation, allowing grouping organisms to spontaneously (and indirectly) detect
correlations between group members’ observations of environmental cues, adjust strategy as a function of changing group
size (even if that group size is not known to the individual), and achieve a decision accuracy that is very close to that which
is provably optimal, regardless of environmental contingencies. Because these properties make minimal cognitive demands
on individuals, collective learning, and the capabilities it affords, may be widespread among group-living organisms. Our
work emphasizes the importance and need for theoretical and experimental work that considers the mechanism and
consequences of learning in a social context.
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Introduction

Associative learning tunes an organism’s behavior to exploit

statistical patterns in the environment and can improve decision-

making accuracy across a wide range of scenarios [1–2]. In the

vast majority of experiments on learning, the subject of study has

been a single individual in isolation (see [3–4] for reviews). When

learning alone, there is a direct relationship between an animal’s

intentions and its actions: the animal observes cues in the

environment and performs a behavioral response. The conse-

quences of the behavior (such as a reward or punishment) may

alter the animal’s valuation of the environmental cues, resulting in

a feedback loop that gradually tunes its behavior to its

environment [3–7].

In contrast to this relatively simple scenario, many animals –

including the majority of species commonly employed in learning

experiments, such as rats, pigeons, and humans – live and forage

naturally in social groups. Sociality offers many benefits to

individuals, including improved sensing and decision-making [8–

9], decreased risk of predation [10–16], improved foraging success

[8,16–21], and the capacity for thermoregulation [22]. For these

and other species (e.g., fish [8,16–18,20–21,23], birds [24–25],

ants [20], honeybees [26], cockroaches [27] primates [28–29], and

meerkats [30]), decisions are not made in isolation. Instead, in

order to preserve the benefits of sociality, animal groups often

must come to a consensus regarding where and when to travel or

forage, despite the presence of dissenting opinions. While not

universal amongst social animals, consensus decision-making is

widespread in nature [15,31–34], but does not necessarily imply

that individuals are altruistic or highly cooperative. While

members of some groups may be highly related (such as ants,

honeybees, and primates), for many other species (such as some

fish and birds), group members are unrelated to each other, and

individuals obtain direct fitness benefits from maintaining group

cohesion. These benefits provide a strong incentive for individuals

to remain together, providing a platform for other emergent

phenomena such as collective learning, which we explore here.

A common means by which consensus is achieved in animal

groups is through relatively local responses to the positions or

motion of others. Thus, in many species, such as schooling fish

[16,23,35–37] or flocking birds [25,38–39], individuals must

reconcile any personal directional preferences with their social

tendency (to avoid isolation, and to copy the movement decisions

made by others). Spatially explicit models of collective movement
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(or ‘swarming’) are commonly employed to describe mobile animal

groups. In these models, individuals interact only with near

neighbors, such as individuals within a certain Euclidian distance

(metric models) or a set number of nearest neighbors regardless of

distance (topological models) [38,40]. These neighbors may change

through time due to the motion of individuals (time-varying

networks) [23,35–36,39–45]. For this class of opinion dynamics

models, groups are typically highly cohesive, and the motion of

groups is well approximated by simple majority rule when

collectively deciding between discrete options (see supplemental text

S1 and figures S1,S2). Effective consensus thus emerges from local

interactions among individuals. Although individuals cannot explic-

itly ‘tally votes,’ they nevertheless exhibit the capacity to select,

collectively, the direction preferred by the majority when conflicting

preferences exist [23,25,43], even in the presence of a ‘strongly

opinionated’ minority [23]. Consequently it is not necessary to

simulate the full spatial dynamics to capture accurately the outcome

of consensus decision-making by organisms [23].

One consequence of consensus decision-making (regardless of

the precise mechanism by which consensus is achieved) is that it

breaks the direct relationship between individual preference and

action. An individual’s preferences may be overridden by those of

others, such that the individual experiences a part of the

environment that it would not have had it been alone. This alters

what individuals learn about their environment and also implies

that learning by multiple grouping individuals becomes coupled;

the preferences of one individual can affect what another

experiences, and what one individual learns can affect the future

learning of other individuals in the group. Social learning allows

individuals of many social species to learn by observing the

behaviors of conspecifics [46–52]. Individuals tend to follow the

decisions of others when their personal information is unreliable

[53] or costly to acquire [54]. Nonetheless, associative learning has

not been investigated in a social context. Furthermore, the

majority of experiments on social learning study a single test

subject (the observer), separated from conspecific demonstrators

(e.g. [53–59]). In a freely behaving group, however, each

individual can simultaneously act as demonstrator and observer,

resulting in a coupling between preferences, which potentially

affects the learned behavior of all individuals in the group.

The impact of these coupled dynamics on associative learning in

animal groups has yet to be explored, despite the fact that

associative learning (whereby individuals learn to associate

environmental cues with rewards), occurs in all organisms with a

nervous system [60–61]. Since consensus decisions break the direct

feedback between preference and experience, it is not clear to

what degree learning is beneficial in a collective context, whether

learning rules in a social context need to be more complex (such as

group size or context dependent) in order to be effective, or how

learning in isolation and subsequently pooling opinions as a group

compares with learning as part of a collective.

Furthermore, natural environments typically contain not one,

but potentially many informative cues, and a crucial challenge for

animals is to learn the appropriate relative usefulness of the cues in

order to maximize decision accuracy. Optimal voting theory [62]

demonstrates that the relative value of environmental cues

depends on group size as well as the properties of the cues.

Similar to decision-making in isolation, the reliability of a cue (the

probability that it accurately predicts a reward or punishment) is

important. Unique to collective decision-making, however, and of

central importance, is the observational correlation of a cue (the

similarity between two individuals’ observations) (figure 1) [63]. In

nature, some cues may be subject to relatively low observational

correlation, such as cryptic visual cues, where individuals exhibit a

relatively independent probability of correctly observing accurate

information from the cue [21]. Other cues, however, likely result

in high correlation, such as loud auditory cues, strong environ-

mental odors, or large visual landmarks that can readily be

perceived by all individuals in the group. For high correlation cues,

group members perceive similar observations of the cues, such that

there is a high probability that they all receive true (or false)

information (figure 1). Because correlations decrease the indepen-

dence of observations made by different group members, they

limit the benefits derived from aggregating observations [62–63].

In general, for group-living animals the optimal behavior is to rely

primarily on those cues that are less correlated and those that

more reliably lead to rewards [62].

Here we present a general framework for studying collective

learning and consensus decision-making in animal groups

(figure 2). In this framework, we simulate individual associative

learning as in the existing literature, i.e., we do not make any new

assumptions regarding the mechanisms by which individuals learn

to associate cues with rewards, nor do we afford additional

cognitive abilities to individuals. However, we place individual

learning within the context of consensus decision-making, as

exhibited by many self-organized animal groups [15,32–34]. Our

framework is agnostic to the mechanism by which animal groups

reach consensus, and thus our conclusions are consistent with both

spatial and non-spatial models of collective decision-making. This

allows us to focus on the coupled dynamics between consensus

decisions and associative learning, a previously unexplored aspect

of animal collective behavior.

Model

We consider a group of N individuals choosing between a

number of discrete options. Here we model two options (which we

denote as option A and option B), for simplicity, and because in

nature many decisions are binary (such as whether or not to flee

from a potential predator, whether or not to approach a shelter, or

selecting among potential areas in which to forage). In a given

trial, either option is equally likely to be superior a priori (a

uniform prior over the options); therefore, all of the information

available to individuals is contained in the environmental cues. We

Author Summary

Learning is ubiquitous among animal species, allowing
individuals to adjust their behavior in response to their
environment to improve their chances of survival and
reproduction. However, while many animals live and make
decisions within social groups, it is not well understood
how associative learning functions within a social context.
We describe an empirically derived model of collective
learning and compare the learned performance of animals
within groups to the optimal behavior for a wide range of
environmental conditions and group sizes. We find that
the learning rules derived from experiments with individ-
ual animals readily generalize to a social context, and these
relatively simple rules result in behavior that is close to
optimal, even when individuals know neither the size of
their group nor the properties of environmental cues.
Individuals that learn in isolation and subsequently join
together as a group make substantially worse decisions.
These results demonstrate the importance of learning
within a collective context and highlight the need for
experimental work to investigate the role of collective
learning in enhancing decision accuracy in animal groups.
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assume that the individuals in the group employ consensus

decision-making, and, for tractability, that the reward (e.g., safety

from a predator) is shared equally among individuals in the group.

(a) The informational environment
In order to gain information about the quality of the two

options, individuals observe environmental cues, which could be

odor, visual, auditory, or other sensory cues (figure 2a). Each cue

indicates to each individual that one or the other option is superior

on that particular trial. For simplicity we assume two such cues.

Since individuals in groups must differentiate between cues with

different degrees of observational correlation in order to improve

collective accuracy [62], in our model one of the cues has low

correlation (i.e., observations of the cue by individuals in the group

are independent of each other, such that individuals may have

opposing information from this cue regarding which is the superior

option), while the other cue has high correlation (i.e., all

individuals make the same observation of the cue and agree

about which option this cue indicates is superior; figure 1) [63].

The reliability of a cue is the probability that it correctly predicts

the superior option. These reliabilities are denoted by rL and rH

for the low and high correlation cues, respectively, and can range

from 0.5 to 1. Effective collective learning would allow individuals

in groups to give additional value to the low correlation cue

(beyond its reliability), due to the benefit of multiple independent

observations that cue affords. Consequently, the most interesting

scenario is that in which one cue has lower correlation while the

other cue has higher reliability, i.e., rLvrH .

(b) Individual decision-making
Individuals translate their observations of the two environmen-

tal cues into a discrete preference, or vote, for one of the two

options. Following well-established psychological models of

decision-making by isolated individuals, we assume that the

individual rule is to vote for an option with a probability

proportional to the sum of the associative strengths (see below)

of all of the environmental cues that indicate that option. Thus,

individuals vote for option A with a probability Pi
A(t) and option B

with probability Pi
B(t)~1{Pi

A(t), where t is the current trial, and

i indicates a particular individual. In our model, because we have

only two cues and two options, from the perspective of an

individual there are only two possible scenarios: either the two cues

both indicate the same option is superior, or they indicate different

options. When the two cues indicate that the same option is

Figure 1. The observational correlation of cues. (a) Observational correlation describes the degree to which observations made by different
group members are independent of each other. A low correlation cue provides group members with independent observations, while a high
correlation cue provides just one observation to all group members on a given trial. (b) Exclusive use of a low correlation cue results in a monotonic
increase in collective accuracy as group size increases (green solid line), a hallmark of collective wisdom (rL~0:6). In contrast, exclusive use of a low
correlation cue shows no increase in collective accuracy with group size (black solid line; rH~0:8). A mixed strategy, whereby individuals
probabilistically choose one of the cues, may lead to collective accuracy greater than that obtained from using either of the cues exclusively when
rLvrH .
doi:10.1371/journal.pcbi.1003762.g001
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superior, the voting rule implies that an individual always votes for

that option. However, when the two cues indicate opposing

options, an individual votes for the option indicated by the low or

high correlation cue with a probability proportional to the

associative strength of that cue. We denote the probability of

choosing the option indicated by the low correlation cue as pi(t),
irrespective of whether the low correlation cue indicated option A

or option B. Similarly, the probability that an individual votes for

the option indicated by the high correlation cue is 1{pi(t)
(figure 2b).

(c) Consensus decision-making
Once individuals have formed an opinion about which option

they consider superior, these opinions must be aggregated in order

to produce a collective decision. For some species, social

interactions are weak and temporary. Other species, however,

are strongly social, and empirical work has shown that, despite

employing different interaction rules, many animal species,

including primates [28–29], meerkats [30], fish [16–18,20,23],

and insects [20,27], typically make consensus decisions. Our

model does not consider the precise mechanism by which

individuals interact, since here it is the outcome of consensus

decision-making, and its relationship to individual associative

learning, that is important (however, we demonstrate, in

supplemental text S1 and figure S2, that considering the specifics

of interactions, such as by simulating local spatial interactions

among individuals [23,41,43], does not affect our conclusions).

Based on experimental evidence from many types of animal

groups [17–18,20–21,23,32–33] we assume that individuals can,

and often do, select the option preferred by the majority

(figure 2c). Further empirical and theoretical work has demon-

strated that the presence in the group of individuals with no

preferences can even strengthen majority rule in animal groups

[23]. As shown by spatially-explicit models of mobile animal

groups and in experiments, when there are equal numbers of votes

for each option, the group is able to avoid a deadlock and chooses

an option randomly [23,25,43] (supplemental text S1 and figure

S2).

(d) Individual learning
After the group chooses one of the options, individuals

experience the outcome (the presence or absence of a reward)

and employ an associative learning rule to update their knowledge

of the environment based on this experience (figure 2d). Following

standard models of learning in the psychology literature,

knowledge of the environment is encoded by an ‘associative

strength’ for each environmental cue. Each individual i stores two

associative strengths, Vi
L(t) and Vi

H (t), representing, respectively,

the individual’s valuation of the low and high correlation cue.

Individuals in our model do not explicitly estimate the size of the

group they are in, nor the observational correlation or reliabilities

of the cues, which all contribute to determining the optimal voting

behavior (see below). It is not known to what extent animals are

aware of the size of the group to which they belong, and it is likely

that many animals under consideration in this model are unable to

accurately estimate group size, either because of limited cognitive

abilities, because the group may be large or fluctuating, making

estimates of its size difficult, or because of the local nature of

interactions [64]. Similarly, it is not known whether individuals

can estimate the observational correlation of cues; therefore, in this

model we employ a conservative approach, and assume that they

are unable to do so (also, as we will show, they need not be able to

do so). In short, we do not make new assumptions about the

process by which associative learning occurs [3–6].

At the start of a simulation, all individuals lack any knowledge of

the two cues and therefore the associative strengths for both cues

are identical and very small (Vi
L~Vi

H&0). Also, following

standard models of learning, individuals update the associative

strength(s) only of the cue(s) that indicated the option that was

ultimately selected by the group. Associative strengths of cues are

updated according to the following learning rule, which is similar

to the well-known and experimentally-validated [3–6,65–69]

Figure 2. Flowchart of the collective learning process. (a) A decision trial begins with individuals observing cues in the environment. In this
model we have two cues, one with low observational correlation and one with high correlation. (b) Individuals use the low correlation cue with
probability pi(t) and the high correlation cue with probability 1{pi(t) in order to form a discrete vote for one of the two options. In the case that
both cues indicate the same option, the individual always votes for that option. (c) The votes are aggregated and a consensus decision is made by
simple majority rule. (d) The resulting reward or punishment is used to update each individual’s voting behavior. A learning rule similar to the
Rescorla-Wagner learning rule is used to update the associative strength(s) of the cue(s) that were present at the chosen option. The associative
strengths determine pi(t) and therefore how an individual votes.
doi:10.1371/journal.pcbi.1003762.g002
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Rescorla-Wagner rule: Vi(tz1)~Vi(t)za(l{(Vi
L(t)zVi

H (t))),
where a is the learning rate (here taken to be 0.1), l is 1 if the

option selected by the group was the superior option and 0 if it was

not [5,7], and V represents the associative strength of any cue that

indicated the option chosen by the group. In general, this

individual learning rule increases the associative strength of cues

that are consistently paired with a positive outcome (the superior

option) and decreases those that are paired with a negative

outcome (the inferior option) and therefore serves as a memory of

past events. Because individuals observe independent and poten-

tially different information from the low correlation cue, only a

fraction of the group will update the associative strength for that

cue on a given trial. This results in individuals in a group

potentially learning different associative strengths for the cues

despite sharing a common experience of decision outcomes. The

associative strengths are related to the voting behavior in the

following way: pi(t)~Vi
L(t)=(Vi

L(t)zVi
H (t)). Equivalently, indi-

viduals vote for an option proportionally to the total associative

strength of the cues they perceive as indicating that option. This

linear mapping between associative strengths and voting behavior

is common in models of learning [7], although we explore

alternate mappings and demonstrate in the supplemental text S2

and figure S3 that this does not impact the results.

During the course of repeated trials, an individual’s associative

strengths are modified, leading to a change in its probabilities

Pi
A(t) and Pi

B(t) of voting for the two options, which are the direct

determinants of the group’s resulting decision accuracy. We

simulate learning dynamics for a wide range of group sizes N and

across all combinations of cue reliabilities rL and rH in order to

assess how collective learning functions under different conditions.

(e) Model extensions
In the model framework presented (figure 2), we have

deliberately made biologically realistic but relatively simple

assumptions. However our model is robust to deviations from these

assumptions. For example, as we show in supplemental text S3 and

figure S4, the general conclusions we arrive at do not depend on the

exact choice of the collective decision rule by which consensus

decision-making is achieved, nor on the specific individual voting

rule (linear or nonlinear) (supplemental text S2 and figure S3). In

addition, though not addressed here, the model framework can

readily be tailored to generate predictions about specific behavioral

contexts or animal species, including species in which consensus is

not strongly enforced, or in which individuals have varying degrees

of influence in the group decision, due to behavioral syndromes,

differing physiological needs, or dominance hierarchies. Alternate

learning rules may also be studied. The core ingredients are merely

that (1) individual experiences are influenced by other group

members and (2) learning occurs with regard to the experienced

outcome, not the individually preferred one.

Results

(a) Collective learning across environments
In the case of non-social animals, or those in isolation (N~1), if

both cues indicate that the same option is superior, maximizing

reward rate requires an individual to choose that option. However,

if the two cues indicate that different options are superior, then the

individual should choose the option indicated by the more reliable

cue: p �~0 if rLvrH and p �~1 if rLwrH (where asterisks denote

the optimal behavior). If we simulate such a case, we find that

isolated individuals do learn to give greater weight to the option

indicated by the more reliable cue, such that pv0:5 when rLvrH

and pw0:5 when rLwrH (figure 3a). This result is compatible with

previous experiments on isolated animals [70–71].

If the collective learning process is unaffected by the observa-

tional correlation of cues or group size, we might expect the

learned voting behavior of individuals in groups (Nw1) to be

Figure 3. The learned and optimal behavioral strategies of individuals in a social context, across environmental conditions and group
sizes. (a–d) The mean learned voting behavior p (the probability that individuals use the low correlation cue), for all combinations of reliabilities of the
low correlation cue (rL) and high correlation cue (rH ) for (a) group size N~1 (isolated case), (b) N~5, (c) N~10, and (d) N~50. For each environment
and group size combination, 500 simulations of 1000 training trials were performed, using a learning rate of a~0:1, and the mean behavior of the last
100 trials across the simulations is reported. (e–h) The optimal voting behavior for the environments and group sizes shown in (a–d).
doi:10.1371/journal.pcbi.1003762.g003
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identical to that of isolated individuals. This is not what we

observe. As group size increases, the learned voting behavior

changes, such that individuals rely more heavily on the low

correlation cue for a given environment (figure 3b–d), indicative of

effective collective learning. For relatively large groups (N§10),
individuals rely primarily on the high correlation cue only when

that cue is extremely reliable (figure 3c–d).

Consensus decision-making therefore results in learned individ-

ual voting behavior that is markedly different from that exhibited

by isolated individuals under identical environmental conditions.

We find that the coupling between the learning of group members

allows individuals to incorporate observational correlations,

reliabilities, and group size into their valuation (associative

strength) of the cues in a way that allows them to make

substantially more accurate consensus decisions.

(b) The optimality of collectively learned behavior
The above results demonstrate that grouping individuals exhibit

learned voting behavior that depends not only on cue reliability,

but also on the observational correlation of environmental cues, as

well as group size (without requiring them to be able to estimate

any of these explicitly). However, it is not clear, given the

environmental conditions, how close the resulting performance is

to that which is optimal. To investigate this, we derived the

optimal individual voting behavior that maximizes collective

accuracy, for any environmental condition (rL and rH ) and group

size N. In the case where both cues indicate that the same option is

superior, an individual should vote for the indicated option.

However, when the two cues indicate that different options are

superior, the optimal behavior is to vote for the option indicated

by the low correlation cue with probability p�~1 when its

reliability is greater than that of the high correlation cue (rLwrH ),
p�~0 when the high correlation cue is very reliable

(rHw

1

1zb(Nz1)=2
), and otherwise p�~ (b1zc{ac)(1zb)

b2zc{ac
, where

a~
1{rH

rH

, b~
1{rL

rL

, and c~
2

N{1
(see supplemental text S4 for

the complete proof). In short, when the two cues indicate different

options are superior, the optimal voting behavior is to choose

exclusively the option indicated by the high or low correlation cue

if its reliability is sufficiently high, and otherwise to exhibit a mixed

strategy in which individuals probabilistically choose either option

(figure 3e–h).

We illustrate how the collective accuracy varies with the

individual voting behavior for a range of environmental conditions

and group sizes, and we show the optimal voting behavior (yellow

triangles) and the learned voting behavior (black stars) on this

landscape (figure 4). When rLwrH (black lines), it is always

optimal to choose exclusively the option indicated by the low

correlation cue regardless of group size. When rL~rH (red lines),

individuals in isolation (N~1) should value the two cues equally

but, in groups, should rely exclusively on the low correlation cue.

When rLvrH (blue lines), individuals in isolation (N~1) should

choose exclusively the option indicated by the high correlation

cue. However, as group size increases, the optimal behavior

gradually shifts towards greater reliance on the low correlation

cue. In all cases, we observe that the learned behavior closely

tracks the optimal behavior (figure 4).

We generalize this result by showing the collective accuracy as a

result of the collectively learned voting behavior for all environ-

ments and a wide range of group sizes (supplemental figure S5).

We further show this accuracy as a fraction of the maximum

possible accuracy, achieved by the optimal voting behavior

(figure 5a–d) and find that across all conditions, the achieved

accuracy is extremely close to the maximum possible.

An implicit assumption in studies of collective intelligence is that

the ‘wisdom of crowds’ accrues due to individuals pooling

knowledge that was learned independently. If true, then one

would expect individuals that exhibit a voting behavior learned in

isolation, and whose opinions are subsequently pooled into a

group decision, to also exhibit a high degree of collective

intelligence. In fact, we find that such groups perform relatively

poorly (figure 5e–h), and do so increasingly for larger group size.

Therefore, we find that it is not sufficient for individuals to learn in

isolation and to subsequently pool their knowledge. Instead, it is

important for individuals to incorporate observational correlation

and group size into their valuation of a cue, for which collective

learning is critical.

In this model, and based on theoretical and empirical evidence

[17–18,28,34], we assumed that animal groups make decisions

through simple majority rule. However, this is only one particular

Figure 4. The accuracy landscape of collective decisions. Lines denote the collective accuracy as a function of voting behavior p for three
representative environments and for group size (a) N~1, (b) N~5, and (c) N~10; yellow triangles denote the optimal voting behavior that results in
the maximum collective accuracy; black stars represent the voting behavior learned by our model for that group size and environment. As group size
increases, it is optimal to rely increasingly on the low correlation cue, regardless of the environmental contingencies. The learned behavior is able to
track this shift in the optimal behavior, resulting in near-optimal accuracies for any group size and environment.
doi:10.1371/journal.pcbi.1003762.g004
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method of aggregating opinions. For example, an alternative

consensus decision rule is to decide on an option only if a

minimum proportion of the group votes for that option (,50% or

.50%, representing submajority and supermajority thresholds,

respectively). This may occur in the context of predator detection

where, because of asymmetric costs, the reaction of a small

proportion of the group may cause the entire group to flee [30,72].

Limiting a group to simple majority rule, rather than the more

general sub- and supermajority thresholds, could, in principle,

constrain the accuracy that a group may attain. The provably

optimal voting rule for groups in which members indicate their

vote, explicitly count votes, and can adopt any type of vote

aggregation rule (capabilities unlikely to be available to most

animal groups) was found by Nitzan and Paroush [62], in the

context of human organizations such as juries, governing bodies,

and medical panels. They found that the optimal strategy is to

adjust the majority threshold according to the cue reliabilities and

group size.

We compared the efficacy of this ‘globally optimal’ group

consensus decision rule to the optimal individual voting behavior

with the constraint of simple majority rule that we identified and

found that the two rules result in nearly identical collective

accuracies (supplemental text S5 and figure S6). Therefore, the

decentralized rule that many animals follow, in which a

probabilistic individual behavior is employed instead of a global

supermajority rule, poses very little restriction on the collective

accuracy that can be achieved by groups.

(c) Collective learning in dynamic environments
That the collectively learned individual voting behavior

substantially outperforms the behavior learned in isolation and

subsequently expressed in a group context suggests that collective

learning may play an important role in group-living. However,

many animals exist in ‘fission-fusion’ populations in which groups

readily merge and split over a period of weeks [73], days [74] or

even minutes [75–81]. Thus individuals may not repeatedly learn

about their environment with the same group members or in the

same group size. Furthermore, natural environments are dynamic,

and cues can change in their reliability in predicting the location of

food or predators (for example, food availability may be seasonal).

In order for individuals to make accurate decisions in this setting,

collective learning must be robust to the splitting and merging of

groups, and to changes in cue reliability.

We first suppose that individuals employ the optimal individual

voting behavior for their environment and group size and consider

abrupt changes in group size and environmental conditions. The

resulting accuracy experienced in the new environment is

compared to the accuracy that would result from using the

appropriate optimal voting behavior for the new environment.

Across changes in group size (supplemental figure S7a–c) and

environmental conditions (supplemental figure S8a–c), we find

that subsequent to most changes in group size and environmental

conditions, the collective accuracy remains close to optimal, even

when learning has not occurred in the new context. This is

because it is optimal to rely on the low correlation cue for most

environments and group sizes (figure 3e–h), so that changes within

that regime do not result in substantial decreases in accuracy. We

find that individuals are far from optimal only when there are large

changes in group size (particularly when many small groups are

combined into a very large group, or vice-versa) or when the

reliability of environmental cues changes drastically.

We selected several particularly challenging environmental

transitions and subjected our collective learning model to these

conditions. Individuals across all contexts are able to adaptively

adjust their voting behavior subsequent to a change in group size

or environment and reach an accuracy that is close to the

maximum possible for the new context (supplemental figure S7d–f,

Figure 5. Comparing the accuracy of collectively and individually learned behavior to the accuracy of the optimal behavior. (a–d)
The collective accuracy resulting from the collectively learned behavior as a fraction of the maximum possible for that environment and group size,
for all combinations of reliabilities of the two cues, for group size (a) N~1, (b) N~5, (c) N~10, and (d) N~50. For each environment and group size
combination, 500 simulations of 1000 training trials were performed, using a learning rate of a~0:1, and the mean behavior of the last 100 trials
across the simulations is reported. (e–h) The collective accuracy resulting from the behavior learned in isolation as a fraction of the maximum possible
for that environment and group size.
doi:10.1371/journal.pcbi.1003762.g005
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S8d–f). Learning in one environment does not preclude learning in

a new environment, nor does the collective context impede

adapting to changing environments. Thus, fission-fusion dynamics

do not necessarily limit the ability of animals to locate the effective

voting behavior across a wide range of group sizes.

Discussion

To date, studies of associative learning have largely been

informed by experiments on individuals in isolation. Under such

circumstances, there is direct feedback between preference and

experience that often allows individuals to accurately learn the

value of cues in the environment. However, many organisms

spend at least part of their lives in groups and in order to maintain

the benefits of group living, often must make consensus decisions.

Coming to a consensus decouples the direct relationship between

individual preferences and the outcomes of decisions, and it is not

clear how animals could learn an accurate valuation of environ-

mental cues.

Here we demonstrate that embedding simple associative

learning in a social context fundamentally alters what individuals

learn about their environment and spontaneously allows organ-

isms to achieve close to provably optimal collective decision-

making, regardless of environmental conditions. This is in contrast

to individuals who learn in isolation and subsequently pool

information as a group, which can result in relatively poor

collective decision-making when cues have varying degrees of

observational correlation.

We show that the individual behavior that maximizes collective

decision accuracy is a function of both group size and the

properties of environmental cues (notably their reliability and the

observational correlation between individuals). However, when

learning collectively, individuals are able to accurately value

environmental cues without explicitly estimating any of these

parameters. Thus, sophisticated cognitive processes are not

necessary for highly effective decision-making in a wide range of

environments.

While our results are robust to relaxing several of the model

assumptions (see supplemental text S2,S3 and figures

S3,S4,S7,S8), our model framework can also be applied to other

classes of collective decision-making mechanisms [82–90]. For

example, it is plausible that learned knowledge of the environment

(encoded by the associative strengths) may translate into influence

in the group decision, whereby individuals with stronger opinions

about which option is superior may have greater influence [91–

92]. Furthermore, many groups are composed of dominance

hierarchies with a small subset of individuals controlling the group

decision [24], individuals in groups may have intrinsically different

leadership abilities due to behavioral syndromes [93], and

individuals may have different physiological needs [94]. These

may all contribute to differential influence in the group decision

and consequently alter what is learned by group members. These

modifications, which may more accurately model particular

animal species, are interesting avenues of future research given

their potential effect on collective learning in animal groups.

In our model we assumed that an individual’s learning rule is

similar to that found in animals learning in isolation. This

assumption precluded an individual from directly detecting the

observation correlation of cues or the size of the group, parameters

that we showed to be important in the determination of the

optimal behavior. Nonetheless, even if individuals were not

afforded additional cognitive or communication abilities, they

were able to learn near optimal behavior. However, it is possible

that the learning rule is indeed different for animals in a collective

context. Our work suggests the need for empirical work that

studies how associative learning functions within animal groups.

We have considered a simple, and potentially ubiquitous, form

of collective learning, in which individuals’ experiences of the

environment is biased by the experiences of others. The same

learning rules that are known to lead to effective decision-making

in single individuals are shown to be equally effective in groups of

any size. This affords social organisms a robust and simple

mechanism for learning behaviors that lead to accurate decisions

in relatively complex environments containing multiple cues that

vary in reliability and observational correlation, and which may

fluctuate in time. Therefore, collective learning may allow even

simple group-living organisms to reliably achieve collective

wisdom across diverse environmental and social contexts.

Supporting Information

Figure S1 Illustration of the zones of interaction in the
spatial model. Individuals are repelled by any neighbors found

in the inner zone (with radius ) and this repulsion force takes

precedence over any other social forces or innate preferences.

Individuals are attracted to, and align with, neighbors within the

outer zone (with radius q). Individuals cannot detect others outside

of this outer zone.

(TIFF)

Figure S2 Comparing the behavior of the spatial
schooling model to the assumptions of simple majority
rule. (a–c) The proportion of trials in which a given fraction of

the group reached target A, when half of the group prefers target

A and the other half prefers target B. In simulated groups, either

none or all of the individuals reach target A, demonstrating a high

degree of group cohesion. Shown is the result of 10000 simulated

decision-making bouts for each group size. (d–f) The proportion of

trials that the group arrives at target A when a given fraction of the

group prefers target A. The group tends to arrive at target A only

when more than half of the group prefers target A, which agrees

with simple majority rule. Shown is the result of 1000 simulated

decision-making bouts for each fraction of the group and group

size.

(TIFF)

Figure S3 Collective learning for a range of logistic voting
behavioral rules. Top row illustrates different steepnesses of the

logistic function used for the voting behavior, from very shallow (left) to

very steep (right). Bottom row shows the resulting collective accuracy

(as a fraction of the maximum possible accuracy for that environmental

condition and group size) as a function of the steepness of the voting

rule. All possible combinations of group sizes N~ 1,5,10,100f g,
rL~ 0:5,0:6,0:7,0:8,0:9,1:0f g, and rH~ 0:5,0:6,0:7,0:8,0:9,1:0f g
were tested. For each combination, 1000 simulations were performed

for 1000 training trials using a learning rate of a~0:1, and the mean

collective accuracy of the last 100 trials across all simulations was

calculated. Collective learning suffers at very shallow logistic functions

for the number of trials but performs equivalently well at sufficiently

steep functions.

(TIFF)

Figure S4 The learned and optimal voting behavior of
individuals in a collective context, across environmental
conditions and group sizes, for groups employing a
logistic consensus decision rule. (a–d) The mean learned

voting behavior, or probability p that individuals vote for the

option indicated by the low correlation cue, for all combinations of

reliabilities of the low correlation cue (rL) and high correlation cue

(rH ) for (a) group size N~1 (isolated individuals), (b) N~5, (c)
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N~10, and (d) N~50. For each environment and group size

combination, 500 simulations of 1000 training trials were

performed, using a learning rate of a~0:1, and the mean

behavior of the last 100 trials across the simulations was plotted.

(e–h) The optimal voting behavior for the environments and

group sizes shown in (a–d).
(TIFF)

Figure S5 The collective accuracy resulting from the
collectively learned behavior. (a–d) The mean collective

accuracy for all combinations of reliabilities of the two cues, for (a)
group size N~1, (b) N~5, (c) N~10, and (d) N~50. For each

environment and group size combination, 500 simulations of 1000

training trials were performed, using a learning rate of a~0:1, and

the mean behavior of the last 100 trials across the simulations was

used.

(TIFF)

Figure S6 Comparison of collective accuracy resulting
from the optimal voting rule with the constraint of
simple majority rule to the accuracy attained when any
group decision rule can be employed (the ‘global’
optimal rule). For each group size, we tested all combinations

of cue reliabilities rL and rH and calculated the fraction of the

accuracy of the globally optimal rule that the simple majority

optimal rule achieves. Across all group sizes and environments, the

simple majority optimal rule nearly always achieves greater than

99% of the accuracy of the globally optimal rule.

(TIFF)

Figure S7 Collective learning subsequent to abrupt
changes in group size for three representative environ-
ments. (a–c) We assume that individuals use the voting behavior

that is optimal for the environment and starting group size (y-axis)

and calculate the difference in collective accuracy that results from

using that behavior in a range of new group sizes (x-axis) relative to

the optimal behavior for the new group size. (d–f) We select four

of the most challenging conditions in each environment (colored

dots in a–c) and simulate collective learning in those contexts.

Colors of lines match the dots in (a–c). Following the change in

group size (which occurs after 500 trials), individuals in all

conditions asymptote at close to the maximum possible for the new

context.

(TIFF)

Figure S8 Collective learning subsequent to abrupt
changes in the reliability of environmental cues for
three representative group sizes. (a–c) For simplicity, we fix

the reliability of the high correlation cue at rH~0:75 and consider

all combinations of changes in the reliability of the low correlation

cue. We assume that individuals use the voting behavior that is

optimal for the starting environment and group size (y-axis) and

calculate the difference in collective accuracy that results from

using that behavior in a range of ending reliabilities of the low

correlation cue (x-axis) compared to the optimal behavior for that

environment. (d–f) We select four of the most challenging

conditions in each group size (dots in a–c) and simulate collective

learning in those contexts. Colors of lines match the dots in (a–c).
Following the change in cue reliability (which occurs after 500

trials), individuals in all conditions asymptote to close to the

maximum possible for the new context.

(TIFF)

Text S1 Comparing simple majority rule to a full
spatial model of collective decision-making. Description

of the spatial schooling model and comparison of its behavior to

our assumptions of consensus and simple majority rule.

(PDF)

Text S2 Relaxing the assumption of linear voting
behavior. Comparison of the collective accuracy resulting from

a family of logistic (non-linear) voting behavior rules.

(PDF)

Text S3 Relaxing the assumption of simple majority
rule. Comparison of the learned behavior resulting from a family

of logistic (non-linear) collective decision rules.

(PDF)

Text S4 Proof of the optimal voting behavior for animal
groups. Detailed derivation of the optimal voting behavior.

(PDF)

Text S5 Comparing the optimal restricted voting rule to
the globally optimal voting rule. Comparison of the

individual-level optimal voting rule to the globally optimal voting

rule reveals little loss of collective accuracy.

(PDF)
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