WATER: Paleo Valleys – potential solution to floods (and droughts)

“Among the Sierra Nevada, California” painted by Albert Bierstadt, 1868. Courtesy of Smithsonian American Art Museum: #1977.107.1. Wikimedia pubic domain. Included with appreciation.

Is there a hidden resource, beneath the land, that can ease water problems – both drought and flood? Maybe the answer could be paleo valleys. California found three paleo valleys, one in Sacramento. More await. There has never been a better time for this discovery.

“Sacramento Rice Fields” by photographer Mark Miller, 2014. Creative commons 3.0. Included with appreciation.

California has recently suffered storms and resulting floods imperiling 90% of the state. But the paradox is that California also needs the water. But when drought parches the land, and wildfires burn not just buildings but vegetation that formerly held water with root systems, parched land cannot absorb too much water at once. Yet, recently, California has endured such downpours that flooding is inevitable.

“California Total Precipitation 26 December 2022 to 11 January 2023,” by Weather Prediction Center, 11 January 2023. Public Domain. Included with appreciation, and concern.

 

According to the Pacific Institute in Oakland, letting the rivers hold more water may be the answer to problems at both ends of the spectrum.  Peter Gleick, Pacific Institute’s co-founder, stated that we must “capture more of these flood flows, store it underground in these aquifers.” (Marsh 2023)

“California Water System” graphic by Shannon1, based on DEMIS data, 2010. Creative Commons 3.0. Included with appreciation.

There are two possible solutions, among some others, to deal with extreme flooding and water retention: levees and paleo valleys.

“Sacramento River broken levee.” U.S. Army Corps of Engineers, 1997. Wikimedia public domain. Included with appreciation.

“Levée” is a French term meaning “raised.” The term was first used in New Orlean in 1672. Some natural levees are cliffs or hills, but most are engineered and built. And that means costs, maintenance, repair. Original levees built in California may have to be moved back. Costs estimates are $20 billion. California already has levees, but these structures were designed and built for an earlier time. Today’s virulent storms are more than current levees can handle. California’s Central Valley, where 25% of American produce is grown in a vast agricultural system, relies on levees. But the same area offers another option, now hidden.

“Hanging Valley (a paleo canyon) near Red Rock.” by Greg Willis, 2009. Creative commons 2.0. Included with appreciation.

Paleo valleys. In ancient times, during the ice age, glaciers streamed along the Sierra Nevada mountains into California’s Central Valley. As the glaciers retreated, their powerful melt dragged rock and bits of gravel into the valley. When the glacial rivers dried up, the valleys remained. The depth, width, and terrain of these “paleo valleys” makes them perfect for soaking up today’s floodwaters from storms that are becoming more powerful and releasing more and more water. As a bonus – an important one –  these paleo valleys can absorb 60 times more water than the clay soil of most of the Central Valley. According to Professors Graham Fogg, University of California, Davis, and Rosemary Knight, Stanford, California should use paleo valleys for flood water retention, aquifer recharge, and water renewal. The water storage area is vast, already there, and can be identified by airborne electromagnetic imaging (AEM). There is a technical name for paleo valleys: incised valley fill (IVF). (Knight 2022)

Paleo Valleys used to look like this, but now they are underground and must be located. Image: “Glacial Valley – Stryn, Norway.” by TravelOtter, 2004. Creative Commons 2.0. Included with appreciation.

In both cases, levees or paleo valleys, land will need to be used, perhaps acquired by eminent domain, and involving settlements with land owners. Property owners will not be happy. Neither will governments who will see increased building costs and decreased tax revenues.  Insurance will play an important role: insurance companies will not authorize rebuilding if future flood damage is probable. But while levees will keep the water back, unless they are redesigned, they will not serve the dual purpose of restoring groundwater, increasingly precious in a period of drought. The Colorado River can do only so much.

Could paleo valleys become preserves? Image: “Yellowstone National Park” by Henry Wellge, 1905. wikimedia public domain. Included with appreciation.

Levees will continue to be an important defense against inundations. But paleo valleys may be an additional solution to California’s water challenges: absorbing flood water and replenishing underground aquifers. We are just beginning this exploration: a system of paleo valleys has been found in Southeastern Brazil, and in the Himalayas. Where else may we find these hidden resources? How can we preserve and use them in a new era of climate change? Think of paleo valleys as Nature’s infrastructure.

Flavelle, Christopher and Raymond Zhong. “Weeks of Storms Test California’s Approach to Taming Nature.” 5 January 2023; updated 11 January 2023. The New York Times. https://www.nytimes.com/2023/01/05/climate/california-floods-drought-preparedness.html?smid=nytcore-ios-share&referringSource=articleShare

Gies, Erica. “Hidden ‘Paleo Valleys’ Could Help California Survive Droughts.” 18 November 2022. Scientific American. https://www.scientificamerican.com/article/hidden-paleo-valleys-could-help-california-survive-droughts/

Gies, Erica. Water Always Wins: Thriving in an Age of Drought and Deluge. Chicago: University of Chicago Press, 2022.

Knight, Rosemary, et al., “Airborne geophysical method images fast paths for managed recharge of California’s groundwater.” 2 December 2022. Environmental Research Letters, Volume 17, Number 2. https://iopscience.iop.org/article/10.1088/1748-9326/aca344

Marsh, René. “California’s dilemma: How do you harness an epic amount of rain in a water-scarce state” Let it flood, scientists say.” 10 January 2023. CNN. https://www.cnn.com/2023/01/10/us/california-flooding-drought-dilemma-climate/index.html

Mount, Jeffrey. “The High Cost of Fixing Levees.” 23 February 2017. Public Policy Institute of California (PPIC). https://www.ppic.org/blog/the-high-cost-of-fixing-levees/

Pacific Institute. https://pacinst.org/

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

Print Friendly, PDF & Email

WATER: Armies, Veterans, and Peace

Veterans Day, a Call to Peace. “Veterans Day Poster, 1987.” Wikimedia. Included with appreciation.

Today is Veterans Day, observed in the United States on November 11 since 1919, and founded to commemorate the 11th hour of the 11th day of the 11th month (in 1918) when an Armistice ended World War I. Soon thereafter, the Paris Peace Conference resulted in the Treaty of Versailles. In 1954, Armistice Day was renamed Veterans Day. While today honors those who serve in readiness for war, the origin of the holiday is peace.

Peacetime Roman Army built roads and aqueducts. Image: “Praetorian Guard, circa 50 CE.” Louvre, France. Photograph by Jérémy-Günther-Heinz Jähnick. Gnu license, wikimedia. Included with appreciation.

What is the role of armies in peace? During times of peace, the Roman Army built roads that connected Italy and beyond, and deployed military squadrons to explore and then build the Roman Aqueducts to bring fresh water to the central city. The Netherlands instituted Dike Armies in 1319 to respond to water emergencies.

“Colorado River, Horseshoe Bend,” by photographer Paul Hermans, 2012. CC3.0, wikimedia. Included with appreciation.

Water emergencies are still with us today, perhaps more than ever. The Colorado River, bringing water and electricity to 1 in 10 Americans, as well as agriculture and industry, is 19% smaller than in 2000; reservoirs Lake Mead and Lake Powell are severely depleted. Hydroelectricity, produced by Hoover Dam’s harnessing of the Colorado River, is threatened by drought. The Mississippi River suffers concerning depletion. The same is true for many rivers around the world.  Rights of Rivers deserve protection. Who will defend them?

“Hurricane Ian making landfall, 28 September 2022,” by National Hurricane Center, U.S. National Weather Service. Public Domain, wikimedia. Included with appreciation.

Water problems are causing drought and also inundation. Recent torrents from Hurricane Ian devastated Florida, caused loss of life and property damage totaling in the billions. Areas hit by increasingly powerful floods and storms need rebuilding. Who will do this? How can we best respond to climate damage, or build protection?

History offers an inspiration to uphold military expertise, service, and tradition. We might save our coasts by a modern day equivalent of the Dike Army. We can follow the productive example of the Roman army in sustaining the Colorado River and other threatened water sources.  Armies, and veterans, might serve in what William James called the “Moral Equivalent of War” – defending Nature and Peace.

“Pace” – Italian for Peace. Can we find inspiration in the Roman Army’s works of peace? Image: “Pace” by Fibonacci, CCC3.0. Wikimedia. Included with appreciation.

James, William. “The Moral Equivalent of War.” Lecture 11, pages  267-296, in Memories and Studies. NY: Longman Green and Company, 1911 and presented at Stanford University in 1910 followed by publication in McClure’s Magazine, pages 463-468, August 1910. LINK to text: http://www.public-library.uk/ebooks/65/5.pdf

Nilsen, Ella. “Feds begin ‘expedited’ process to help save drought-stricken Colorado River.” 28 October 2022. CNN. https://www.cnn.com/2022/10/28/us/colorado-river-lake-mead-powell-drought-plan-climate/index.html

Paris Peace Conference. https://www.diplomatie.gouv.fr/en/the-ministry-and-its-network/the-diplomatic-archives/documents-from-the-diplomatic-archives/article/diplomatic-archives-the-peace-conference-paris-18-01-1919

Rights of Rivers. “Universal Declaration of the Rights of Rivers.” www.RightsOfRivers.org

Rojas, Rick. “As Drought Drops Water Level in the Mississippi, Shipwrecks Surface and Worries Rise.” 3 November 2022. The New York Times. https://www.nytimes.com/2022/11/03/us/mississippi-river-drought.html?smid=nytcore-ios-share&referringSource=articleShare

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

 

Print Friendly, PDF & Email

WATER: Floods and Helping Hands

“Helping hands, working together.” by AlphaZeta, 2014. Donated to the public domain by the designer. Creative Commons 1.0, wikimedia. Included with appreciation.

Recent floods in Florida in the United States, and in the Sindh province of Pakistan, caused loss of life, property, and long-term displacement. Because we are the water planet, climate change will first be felt through water. This is true of the past summer’s droughts, reductions in the Colorado River and Lake Mead, heatwaves, and wildfires; now it is true of autumnal seasonal storms intensified by melting glaciers in Pakistan and warming oceans near Florida. If you are reading this post, it is because you are fortunate to have power and electricity. Many do not. If you would like to extend a helping hand, here are some suggestions:

“Sindh Province Divisions, Pakistan” by Nomi887, 2022. Creative commons, wikimedia. Included with appreciation.

Pakistan  – flood relief and rebuilding efforts may be helped by outreach, including sources like the Edhi Foundation, headquartered in Karachi, that provides emergency assistance across Pakistan and internationally. Edhi Foundation’s Flood Relief Campaign may be reached via: https://edhi.org. Another option is Islamic Relief USA: https://irusa.org.

“Hurricane Ian reaches Florida, USA” NASA, Earth Observatory, 2022. Image in the public domain, included with appreciation.

USA – inundations from Hurricane Ian, a category 4 storm with winds of 150 mph, damaged areas of Florida including Captiva and Sanibel, Naples and Fort Meyers. Two million residents are without electricity and running water. The storm is now moving towards South Carolina, Georgia, and North Carolina.  You can volunteer or donate to the American Red Cross via https://www.redcross.org. Another option is Caring for Others at https://caring4others.org.

As climate change continues to cause damage, we may need to respond in two ways: disaster response and proactive renewal. Is it time to consider a Climate Conservation Corps, combining active service and education? Some have suggested an organizational name, and membership term, of CliMates. What do you think of this idea?

“Earth” by NASA, with graphic enhancement by Tdadamemd, 2016. Public Domain, wikimedia. Included with appreciation.

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

Thanks to those who kindly suggested organizations for helping those affected by recent floods.

Print Friendly, PDF & Email

WATER/ENERGY: Hydroelectricity – What is the Future?

Lake Mead is shrinking through prolonged drought. That will affect hydroelectricity generated by the Hoover Dam. Image: “A Comparison of Lake Mead 2000 and 2015,” by Joshua Stevens, NASA Earth Observatory, using Landsat data from U.S. Geological Survey. Image from the Public Domain: wikimedia and nasa.gov. Included with appreciation.

Drought affecting the Colorado River, and resultant depletion of reservoirs Lake Mead and Lake Powell, may soon bring about Tier 2 shortage conditions. When Lake Mead’s water level falls below 1,050 feet above sea level, the new normal will reduce water allotments for Arizona, Nevada, and Mexico. Arizona will face a 21% reduction. Lake Mead’s drought is so big that is it now visible from space. Water for drinking, agricultural irrigation, and industry will be affected.

Will water continue to course through the Hoover Dam’s jet-flow gates? “View of Hoover Dam with jet-flow gates open,” by U.S. Bureau of Reclamation, 1998. Public Domain image. Creative Commons, wikimedia. Included with appreciation.

But there may be more consequences. The Colorado River, down 40% from 2021, flows through the Hoover Dam, generating electricity. If Lake Mead’s water recedes below 1,000 feet (just 50 feet above Tier 2 danger level), “dead pool” will happen, meaning water cannot flow downstream to power the dam. The Hoover Dam supplies electricity to Arizona, California, and Nevada. Western parts of the United States have suffered a prolonged drought; hydropower has dropped to 14% below its 10-year average.

Hydroelectric power is also threatened in other locations around the world. Italy recently suffered electricity reductions due to drought on the Po River. India and Pakistan share water usage, including hydroelectric access, under the terms of the Indus Waters Treaty; eight new hydropower plants have just been approved.

“Murray-1 Hydroelectric Power Station, Snowy Mountains,” by photographer Ear1grey, Dr. Rich Boakes. CC3.0, wikimedia, included with appreciation.

The Murray River of Australia, key to Snowy Mountains Hydroelectric, is now seriously affected by drought; water for drinking, agriculture, and electricity may be threatened. Brazil’s water flows into hydro dams reached a 90 year low, affecting facilities including Itaipú. The alternatives, when hydro fails to produce, may include greater reliance on fossil fuels. Many are concerned about that direction.

The Indus River may add eight new hydropower plants. Image: “Indus River near Skardu, Pakistan,” by Kogo, 2004. GFDL Public Domain, wikimedia. Included with appreciation.

In a world of climate change, increasing droughts may lead to a rethinking of hydroelectric power which, in 2020, generated 1/6th of the world’s electricity. Hydroelectric facilities can be found in 150 countries, with China the largest producer. Global investment in hydroelectricity is significant, and growing; will it be a wise investment?

Hydroelectric Power has a low carbon footprint, and is valuable in a time of climate change. Illustration: “Carbon Emissions by Electricity Source,” by Vattenfall and Japan’s Central Research Institution for the Electric Power Industry, 1999. Image in the public domain, wikimedia. Included with appreciation.

Hydropower is low-carbon electricity, a property valuable in a world trying to limit carbon emissions. Hydropower is also continuous, an important factor to balance intermittency of renewables like solar or wind. The future of hydroelectric power is linked to the future of water. How will recent funding of climate preservation and protection support water sustainability? Will water innovations help harness the power of water to power the future?

Brooke, K. Lusk. “Colorado River.” Renewing the World: WATER. pages 86-95.  Cambridge: 2022. ISBN: 9798985035919.

CNN. “New water cuts coming for Southwest as Colorado River falls into Tier 2 shortage.” 16 August 2022. https://www.cnn.com/2022/08/16/us/colorado-river-water-cuts-lake-mead-negotiations-climate/index.html

Energy Information Administration. “Drought effects on hydroelectricity generation.” 30 March 2022. https://www.eia.gov/today/inenergy/detail.php?id=51839

“Hydro Electric Projects in Indus Basin.” http://indiawris.gov.in/wiki/doku.php?id=hydro_electric_projects_in_indus_basin

Itaipú Binacional. “ITAIPÚ will host global Water and Energy Conference.” 24 January 2022. https://www.itaipu.gov.br/en/press-office/news/itaipu-will-host-global-water-and-energy-conference

National Integrated Drought Information System (NIDIS) and American Planning Association. “Falling Dominoes: A Planner’s Guide to Drought and Cascading Impacts.” 31 October 2019. https://www.drought.gov.

Robbins, Jill. “Dry Rivers Threaten Production of Clean Energy.” 23 August 2021. Voice of America: Science & Technology.

United Nations/India and Pakistan. “Indus Waters Treaty.” 1960. https://treaties.un.org/doc/Publication/UNTs/Volume%20419/volume-419-I-6032-English.pdf

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

Print Friendly, PDF & Email

WATER: Po River Crisis

Po RIver of Italy. Illustration from wikipedia. Public Domain.

How can you grow the bountiful produce so treasured by Italy, and the world, in salty water? The worst drought in 70 years, caused by lack of snow and dearth of rain in Italy’s Po River valley, is choking once-verdant farmland. The Po River is 450 miles (650 kilometers) long, birthed in the Alps and running to the Adriatic Sea. One-third of Italy’s population lives near and depends upon the Po River, savoring the bounty of its farmland. Coursing fresh water from the Po usually overwhelms any drifting waves from the Adriatic, but with the Po’s drought, salty seawater is entering at a rate driving inland as far as 18 miles (30 kilometers). Crops are suffering, and so are cucina povera specialities like manzo all’olio or pisarei e faso.

“Italian cuisine,” by photographer who dedicated this image to the public domain and remains unknown. From wikimedia.

Warming weather and drought have also wreaked havoc elsewhere in Italy. The Marmolada glacier in the Italian Alps collapsed on 4 July 2022, killing seven hikers, including two experienced mountain guides. in an avalanche of melting snow mixed with rocks. Prime Minister Mario Draghi stated the cause of the tragedy was climate change. Temperatures in the area have reduced glaciers by half since warming began. More avalanches are feared.

“View of the Marmolada Glacier” taken by photographer of the Italian army circa 1915-1918. Source: www.esercito.difesa.it. Creative Commons license 2.5. With appreciation to the Italian Army.

Hydroelectricity is also affected by drought. One-fifth of Italy’s energy comes from hydroelectric facilities, mainly located in the mountains. In the first four months of 2022, hydro power fell 40% (compared with 2021) due to drought. A water plant in Piacenza was closed on 21 June due to low water levels of the Po, the river that provides the water for the hydroelectric plant. At a time when Europe is trying to reduce dependence on imported energy, hydro power is essential.

Keeping the lights in Piacenza’s magnificent cultural treasures, homes, and businesses.  Image: “Teatro Piacenza,” by photographer Lorenzo Gaudenzi, 2010. Creative commons license 3.0. With appreciation.

What can be done? For now, a state of emergency declaration will truck water to 125 towns that must ration drinking water. In agricultural areas, drought-tolerant crops may become the new normal. Hydroelectricity may need a rethink and redesign: the Colorado River, Lake Mead, and the Hoover Dam have recently shown hydroelectric threats. Regarding melting glaciers, there is no quick fix. Water systems may be ready for Italian creativity and innovation, like those developed by ancient Romans who built the Aqueducts. Starting in 313 bce, Romans built 11 aqueducts, yielding about 200 gallons (750 liters) per person per day. That is more than the average American has: in 1975, the average was 150 gallons (563 liters) per day; in 2021, it was down to 115 gallons. Ancient Rome had such an abundance of water that the city became known for its fountains; composer Respighi’s Fountains of Rome.

Blackman, Deane R. and A. Trevor Hodge, eds. Frontinus’ Legacy: Essays on Frontinus’ De Aquis Urbis Romae. Ann Arbor: University of Michigan Press, 2001.

Brooke, K. Lusk. Renewing the World: Water. Cambridge: Harvard Book Store, 2022. ISBN: 9798985035919. https://renewingtheworld.com

Evans, Harry B. Water Distribution in Ancient Rome. Ann Arbor: University of Michigan Press, 1994.

Parker, Jessica. “Italians wait for rain where longest river runs dry” BBC 8 July 2022. https://www.bbc.co.uk/news/world-europe-62096162

Patel, Kasha. “”Scenes from Italy’s worst drought in 70 years.” 7 July 2022. The Washington Post. https://www.washingtonpost.com/world/interactive/2022/drought-italy-po-worst-water/

Respighi, Ottorino. Fountains of Rome. Performed by Berlin Philharmonic. https://youtu.be/eGZ9oslaeak

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

Print Friendly, PDF & Email

WATER and ENERGY: Beyond a Drought

June 2022: an early heat wave intensifies drought. Image: “Heat Wave in United States June 13-19, 2021,” by NOAA. Public Domain, creative commons. Included with appreciation to NOAA.

Is it climate change, or just a heat wave? Maybe the former is intensifying the latter. This week, 60 million people in the United States are enduring extreme heat. Texas broke a heat record on June 12 as the electrical grid strained with the number of people turning on air conditioners. Families noted unusual new residents as outdoor insects crawled into any available shelter to escape sweltering heat. Wildfires sparked: more than 30 recent conflagrations burned one million American acres.

Drought may impact hydroelectricity. Image: “Hoover Dam and Lake Mead, – 2007” by photographer Waycool27, and dedicated to the public domain by the photographer. Included with appreciation.

Heat waves add to concern about drought, an ongoing challenge. Lake Mead, the nation’s largest water reservoir, recently marked its lowest level on record since 1930. The Colorado River, source of Lake Mead’s water, recently reported historic new water shortages, triggering enforced reductions along the Upper and Lower Basin states. Now 143 feet below the target full level, Lake Mead’s drop is as deep as the Statue of Liberty is high. That water drop threatens the water supply of millions of residents, farmers, industrial operations, and others. At 36% capacity, if the water in Lake Mead continues to fall (it has been losing more than 1,000 Olympic-sized swimming pools – every day – for the last 22 years), the hydropower capability of the Hoover Dam (which formed Lake Mead) will also be threatened. Engineers and scientists are watching: if Lake Mead drops another 175 feet, the Hoover Dam will reach “dead pool” (895 feet) and the great dam will fall silent. Because 90% of Las Vegas water comes from Lake Mead, that city will not only have less electricity but very little water. (Ramirez et al., 2021)

“Tennessee Valley Authority” Image 2977 by TVA, 2018. This image is the public domain and included with appreciation.

It’s not just Lake Mead and the Hoover Dam that are of concern due to heat and drought. The Tennessee Valley Authority, one of the nation’s first hydroelectric major achievements, warned customers both residential and commercial to turn off the lights. Nashville Electric Service asked people to turn down air conditioning. Itaipú, harnessing the Paraná River, has similarly found drought threatening its hydroelectric capability.

“Talbingo Dam of Snowy Mountains Hydroelectric.” There are 16 dams in the system. Photograph by AYArktos, dedicated to the public domain, creative commons. Included with appreciation.

Hydroelectricity, as the term indicates, is dependent upon water. Australia recently announced Snowy Hydro 2.0, in an effort to double electrical output of Snowy Mountains Hydroelectric. But the snowy part is problematic now that climate change is threatening snowmelt. Further concern is that 35% percent of the “Australian Alps” have seen wetland loss. Now, snow cover may reduce by 20% to as much as 60%.

What happens if water becomes non-renewable? Image: “Dry riverbed in California,” by NOAA, 2009. Included with appreciation.

Drought has serious consequences for agriculture, habitation, and now hydroelectricity. Hydroelectric power is one of the earliest and most widely applied methods of generating electricity from renewable sources. What happens if or when water becomes non-renewable?

Daley, Beth et al., “Snowy hydro scheme will be left high and dry unless we look after the mountains.” 22 March 2017. The Conversation. https://theconversation.com/snowy-hydro-scheme-will-be-left-high-and-dry-unless-we-look-after-the-mountains-74830

David, Molly. “Nashville Electric Service asks customers to help lessen energy use during high temperatures.” The Tennessean. 13 June 2022. https://www.tennessean.com/story/news/local/2022/06/13/heat-wave-tennessee-2022-nashville-electric-service-customers-conserve-power/7613867001/

Ramirez, Rachel, Pedram Javaheri, Drew Kann. “The shocking numbers behind the Lake Mead drought crisis.” 17 June 2021. CNN. https://www.cnn.com/specials/world/cnn-climate

Spang, Edward, William Moomaw, Kelly Gallagher, Paul Kirshen, David H. Marks. “The water consumption of energy production: An international comparison.” 2014. Environmental Research Letters. 9. 105002. 10.1088/1748-9326/9/10/105002 and https://www.researchgate.net/publication/266620784_The_water_consumption_of_energy_production_An_international_comparison

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

Print Friendly, PDF & Email

TRANSPORT: Highways and Wildflowers

“Balsamroot and lupine wildflowers near Tom McCall Preserve along the highway.” by photographer Gary Halvorson, Oregon State Archives, 2014. CC 3.0. Included with appreciation.

On Memorial Day weekend, 34 million Americans will travel by car. It’s the first long weekend of spring: a time of flowers, especially wildflowers. Parks play a role, and so do household and campus lawns participating in No Mow May. But highways can also provide miles of sustenance for spring pollinators like bees.

Highways will be an area of innovation in climate change. “Interstate 80, Eastshore,” by photographer Minesweeper 30. CC3.0. Included with appreciation.

Concrete is efficient, but highways could be improved. In 1965, the United States passed the Highway Beautification Act, providing funding for planting and protection of wildflowers along median and shoulder strips of American highways. President Lyndon B. Johnson signed the bill into law, stating “We have placed a wall of civilization between us and the beauty of the countryside. Beauty belongs to all the people.” (Johnson, 1965) Encouraged by his wife, Lady Bird Johnson who advocated the program to beautify American roads. The Lady Bird Johnson Wildflower Center also honors her vision.

“Highways UK-EI.” by SPUI, dedicated to the public domain. Image: wikimedia. Included with appreciation.

In the United Kingdom (UK), the Construction Industry Research and Information Association (CIRIA) launched the “Big Biodiversity Challenge” with Highways England. Realizing that the UK has lost 97% of its wildflower meadows since 1930, road construction crews finish highways by preparing a side strip or verge for wildflower planting. Highways England plants the flowers. Recently, a section of the A38 from Ashburton to Ivybridge in Devon won the Biodiversity Pollinator Award. France places stormwater ponds every two kilometers along major roads: a recent survey found the ponds have welcomed many amphibian species. Across the UK, B-Lines have mapped a kind of bug highway across England, Northern Ireland, Scotland, and Wales.

Belt and Road Initiative. “One-belt-one-road,” by Lommes. Creative Commons 4.0 International. Included with appreciation.

As the world builds more roads, including space for wildflowers and wildlife is an opportunity to be noted. Will China’s Belt and Road Initiative  (BRI) connecting China, Central and West Africa, parts of Europe, Indian sub-continent, Indo-China, Mongolia, and Pakistan may be the largest road building project in history. Now, as 37,000 miles (60,000 kilometers) of roads are designed and built, would offer an un-precedented chance for environmental inclusion. Should environmental provisions be stipulated by banks, including multilateral development banks and the National Development and Reform Commission (NDRC), funding and overseeing the BRI? What of the roads of India? Africa? The Pan-American Highway?

“Wild-flower” by photographer Anilmahajan19, 2017, in Nagpur, India. GNU license. Included with appreciation.

It has been the practice of some highway systems to seed the median strip between divided highways with grass. But grass can be thirsty, and yet yields relatively sparse benefits. In fact, some states in the Colorado River Compact are outlawing non-functional turf due to the shrinking of Lake Mead and Lake Powell, water reservoirs for the river that supplies both drinking water and electricity to 40 million people. Drought in the area is causing water shortages and also wildfires.

“Lake Mead and Hoover Dam with water intake towers, seen from Arizona side of Hoover Dam,” by photographer Cmpxchg8b, 2010. Generously dedicated to the public domain by the photographer.Image: wikimedia. Included with appreciation.

Should highways be planted, instead, with wildflowers? If you hit the road this weekend, take a look at the wildflowers along highways and also country roads. It’s a natural resource, not often noticed, but increasingly important to the future of climate and environment.

What if all highways and roads hosted wildflowers? Could the world look like this? “Bitterwater Road Wildflowers,” by photographer Alan Schmierer, generously dedicated to the public domain CC1.0. Wikimedia. Included with appreciation.

Conniff, Richard. “Green Highways: New Strategies To Manage Roadsides as Habitat.” 10 June 2013. Yale Environmental 360, Yale University School of the Environment.

Construction Industry Research and Information Association (CIRIA).  https://www.ciria.org

Forman, Richard T.T., et al., Road Ecology: Science and Solutions. Island Press, 2003. ISBN: 1559629326 and 1559639334.

Highways England. https://www.gov.uk/government/organisations/highways-england/

Lady Bird Johnson Wildflower Center. https://www.wildflower.org

Organisation for Economic Cooperation and Development (OECD). “China’s Belt and Road Initiative in the Global Trade, Investment, and Finance Landscape.” OECD Business and Finance Outlook 2018. https://www.oecd.org/finance/Chinas-Belt-and-Road-Initiative-in-the-global-trade-investment-and-finance-landscape.pdf

United States Highway Beautification Act of 1965. Public Law 89-285, 22 October 1965. https://www.govinfo.gov/content/pkg/STATUTE-79/pdf/STATUTE-79-Pg1028.pdf

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

Print Friendly, PDF & Email

WATER: Mapping YOUR Climate Risk

What is your climate risk? Animation created by SaVi software from Geometry Center, University of Minnesota by Grand DixenceWikipedia for view of Iridium coverage. Image animation edicated to the public domain (CC1.0) by its creator, and included here with appreciation.

Climate change brings risk. For some, it is water: floods, storms, and sea-rise. For others, it is drought: water shortages, crop losses, and wildfires. Floods killed 920 people in Belgium and Germany, 192 in India, 113 in Afghanistan, and 99 in China – in one month (July) of 2021. Deaths from floods and related landslides took the lives of people in Bangladesh, Japan, Nepal, Pakistan, and Yemen that same year. (Davies 2021)

“Flooding in Cedar Rapids, Iowa, USA.” Photographed by Don Becker, USGS, 2008. Dedicated to the public domain (CC1.0) by United States Geological Survey and included here with appreciation.

Previous data from weather sources tracked flood risk, resulting in flood insurance for many properties (and denial of such insurance for locations too vulnerable to merit rebuilding). Water damage will only increase with climate warming, as storms grow more powerful. Rising sea levels will escalate floods and coastal inundations. Those who live in the territories of the Colorado River know well another risk related to water: drought. Water scarcity has ravaged crops, parched residential landscapes, reduced drinking water supplies, and now threatens hydropower created by the Hoover Dam. Australia, the most arid continent on Earth, is vulnerable crop loss, and electricity reduction in facilities like Snowy Mountains Hydroelectric Power.

California Fires in 2021. “Erber Fire in Thousand Oaks,” by Venture County Fire Department Public Information Office. Dedicated to the public domain (CC1.0) and included here with appreciation.

Drought also brings another danger: wild fire. Fire risk is growing with climate warming. In 1980, fire damage in the United States tallied $10 billion; in 2021, costs reached $300 billion. Worldwide, fire affects 1.5 million square miles (four million square kilometers) of Earth – each year. To picture that, the area would measure one-half of the continental United States, or more than the entirety of India. Using data from satellites like the Copernicus Sentinel-3, and the European Space Agency (ESA). the Centre for Research on the Epidemiology of Disasters tracked 470 wildfire disasters (incidents affecting more than 100 people) since 1911, totaling $120 billion in damages. The 2021 Dixie Fire in California devoured 626,751 acres (253,647 hectares); that same year, in Siberia, wildfires destroyed 3.7 million acres (1.5 million hectares) to become the largest wildfire in documented history. In 2022, the Calf Canyon-Hermits Peak fire in New Mexico continues burning over 270,00 acres and is still (at this writing) only 29% contained. The cumulonimbus flammagenitus cloud ( or CbFg or pyroCb) from the fire could be seen from space on NASA’s Aqua satellite via MODIS.

What’s your property’s climate risk? Photography by Antan0, 2010. Image of magnifying glass. CC4.0; included here with appreciation.

Would you like to know what the future looks like in your area? Now, a new mapping technology from the First Street Foundation can help you determine your risk. If you live in the United States, enter your street address, or your zip code, and you will see if you are one of 30 million properties vulnerable to flooding or wildfire. To assess your own property’s risk, click here.

Aqua Mission. Earth Observing System, NASA. https://aqua.nasa.gov/content/aqua-earth-observing-satellite-mission

Centre for Research on the Epidemiology of Disasters. https://www.cred.be

Copernicus Sentinel-3. “Measuring Earth’s oceans, land, ice, and atmosphere to monitor and understand global dynamics.” European Space Agency (ESA). https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-3

Davies, Richard. “Worldwide – Over 920 People Killed in Floods and Landslides in July 2021.” 2 August 2021. Floodlist. https://floodlist.com/asia/world-floods-july-2021

First Street Foundation. “Make climate risk accessible, easy to understand, and actionable for individuals, governments, and industry.” https://firststreet.org/mission/

Haddad, Mohammed and Mohammed Hussein. “Mapping Wildfires around the World.” 19 August 2021. Al Jazeera. https://www.aljazeera.com/news/2021/8/19/mapping-wildfires-around-the-world-interactive

Risk Factor. “A property’s flood or fire factor.” https://riskfactor.com

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

 

Print Friendly, PDF & Email

CITIES: Fast Forward Food

“Noodle Bowl for Lunch” by Tran Mau Tri Tam, 2016. Wikimedia/Unsplash: CC0 1.0. Dedicated to the public domain by the photographer. Included with appreciation.

Cities are known for fast food: the drive-through, the grab and go, the snack stop, pop-up restaurants, food trucks, street cafes and food stalls. Fast food can also be found on shelves of urban convenience and grocery stores. One of the world’s favorite quick treats is the instant noodle. In 2020, 116 billion servings of instant noodles were enjoyed. (Cairns 2022)

“Singapore Skyline at Night with Blue Sky.” Merlion444, 2009. Wikimedia Creative Commons 1.0 public domain. Dedicated to the public domain by the photographer, Included here with appreciation.

Singapore, a city created with trade and diversity as founding principles, is home to the launch of new kind of instant noodle  –  good for taste and for the environment, too. Based in Singapore, WhatIF Foods has introduced a noodle made from the Bambara Groundnut.

“Vigna subterranea” as illustrated by A. Engler in Die Pflanzenwelt Ostafrikas und der nachbargebiete. Volume 2, 1895. This work is the public domain and is included with appreciation.

Bambara (Vigna subterranea) is in the legume family and grows underground (like peanuts): it originated in West Africa and is now grown across the world. It’s what is known, nutritionally, as a complete food: offering protein, carbohydrates, amino acids, minerals, vitamins, and fiber. WhatIF Foods produces “BamNut” flour made into noodles. The noodles are a bit pricier than the cheapest brands, but many people may value their superior nutrition.

Map of West Africa by Mondo Magic, 2009. Dedicated by the artist to the public domain (CC 1.0) and included here with appreciation.

Bambara Groundnut, or Vigna subterranea, currently comprises a very small part of food supply market (production in Africa is 0.3 million tons) versus the more traditional noodle dough made from wheat (776.6 million metric tons per year globally). But that may change – because Bambara is drought-tolerant. Many areas of the world already suffering drought (from states served by the Colorado River in the United States, to African and Australian areas experiencing drought and expecting more due to climate change and warming). Crops that can survive in dry soil will be in demand. Recent figures from the United Nations reveal that dry soil chokes 40% of agricultural land, and 56 acres (23 hectares) of arable land are lost to drought EVERY MINUTE.

“Corn shows the effects of drought in Texas,” by USDA’s Bob Nichols, 20 August 2013. This photo is the public domain and included here with appreciation to USDA and Bob Nichols.

There are 300,000 edible plant species, but just three (rice, maize, wheat) comprise 86% of all exports. According to Professor Victoria Jideani of Cape Peninsula University of Technology in South Africa, governments should subsidize agricultural diversity, such as the bambara groundnut, that can resist drought, support food security, and broaden the plant-based dietary options for a future-forward table. By 2050, 68% of the world’s people will live in cities. Land is limited, not only by population growth demands but also by agricultural needs. Optimal use of arable land will be one of the factors in balancing population, food security, and environment.

Bangkok, Thailand is a global megacity offering some of the tastiest food in the world, including legendary noodles. Image: “Food Stalls Bangkok,” by Ian Grattan, 2012. Wikimedia CC2.0. Included here with appreciation to Ian Grattan and Bangkok.

WhatIF Foods are currently sold in Singapore and produced in factories located in Australia and Malaysia, are sold in Asia, and in the regulatory approval process in the European Union. Privately financed, the company is now attracting investors. In the United States, you can purchase WhatIF products (noodles are just one of the products) online. Looking for instant noodle recipes? Here’s eight from eight countries.

Adetokunboh, Adeola, Anthony Obilana, Victoria Jideani. “Enzyme and Antioxidant Activities of Malted Bambara Groundnut as Affected by Steeping and Sprouting Time.” March 2022. Foods 11 (6): 783. DOI:10.3390/foods11060783

Cairns, Rebecca. “This Singaporean startup has reinvented the instant noodle.” 9 May 2022. CNN Business. https://www.cnn.com/2022/05/08/business/whatif-bamnut-sustainable-instant-noodles-climate-hnk-intl-spc/index.html

Cheetham, Peter and Christoph Langwallner, co-founders of WhatIF Foods. https://whatif-foods.com/

Jideani, Victoria. Cape Peninsula University of Technology, South Africa. https://www.researchgate.net/profile/Victoria-Jideani

United Nations Environment Programme. “#FridayFact: Every minute, we lose 23 hectares of arable land worldwide to drought and desertification.” 12 February 2018. https://www.unep.org/news-and-stories/story/fridayfact-every-minute-we-lose-23-hectares-arable-land-worldwide-drought

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

Print Friendly, PDF & Email

CITIES: No Mow May

NO MOW MAY. This month, let your lawn grow with wildflowers to feed seasonal pollinators like bees. Photo: “Wildflowers” by Richard Croft, 2007. Wikimedia CC 2.0. Included with appreciation.

Public parks like Boston’s Greenway or New York City’s Central Park might be the lungs of the city, but urban and suburban yards may be the pop-up restaurants for seasonal pollinators like bees that will help the world through climate change. American lawns occupy 40 million acres, and may be the largest irrigated “crop” in the United States – three times more than irrigated corn. (Milesi, University of Montana and NOAA National Geophysical Data Center)

“Automaton Lawn Mower by Ransomes, Sims & Jeffries of Ipswich, England,” advertisement circa 1867. Public Domain.

No Mow May is an organization in the United Kingdom advocating the absence of lawn mowing, letting lawns grow wild, for this month, offering a spring habitat and feeding ground of wildflowers and clover critical for emerging bees and early pollinators. In addition to homes, colleges are included: Lawrence University recently joined the organization Bee City, USA, and its affiliate: Bee Campus USA.

Fewer lawns, more bees. “Abeille” by Jean-Raphaël Guillaumin, 2010. Wikimedia, CC 2.0. Included with appreciation.

Yards, and campuses, participating in No Mow May noted three times more bee species abundance and five times more bee attendance than in lawn areas.

Another benefit of No Mow May? Water retention. People water lawns. In an era of drought and water scarcity, lawns may be phased out. That what happened in Las Vegas, Nevada.

Lake Mead, water reservoir of the Colorado River, supplies Las Vegas with water. A new law by the Southern Nevada Water Authority prohibits lawns, and watering of nonfunctional turf, in response to drought conditions on the Colorado River. Image: “Lake Mead” by Kjkolb, public domain. Included with appreciation.

A new law, related to water shortages in the Colorado River, enacted by the Southern Nevada Water Authority, decreed first-ever permanent prohibition of non-functional turf (soccer fields are functional, household lawns are not). Residents are digging up grass and replacing it with rocks and cactus, creating xeriscapes, a kind of landscaping reducing or eliminating need for irrigation.

Do you have grass in your yard or on your campus? Participate in No Mow May: for a printable yard sign, click here

Bee City USA. https://beecityusa.org

Bee Campus USA. https://beecityusa.org/current-bee-campus-use-affiliates

Del Toro, Israel and Relena R. Ribbons. “No Mow May lawns have higher pollinator richness and abundances: An engaged community provides floral resources for pollinators” 22 September 2020. National Library of Medicine: National Center for Biotechnology Information. doi: 10.7717/peerj.10021

Milesi, Cristina. “More Lawns than Irrigated Corn.” 8 November 2005. Earth Observatory, NASA.gov. https://earthobservatory.nasa.gov/features/Law/lawn2.php

No Mow May. Plantlife.  https://www.plantlife.org.uk

Osann, Ed. “Toward Sustainable Landscapes: Restoring the Right NOT to Mow.” 6 May 2016. Natural Resources Defense Council. https://www.nrdc.org/resources/toward-sustainable-landscapes-restoring-right-not-mow

Southern Nevada Water Authority. “An Act relating to water; prohibiting, with certain exceptions, the use of water from the Colorado River to irrigate nonfunctional turf on certain properties.” Assembly Bill No. 356, 22 March 2021. https://www.leg.state.nv.us/Session/81st2021/Bills/AB/AB356_R1.pdf

Building the World Blog by Kathleen Lusk Brooke and Zoe G. Quinn is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Un

 

 

Print Friendly, PDF & Email